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1 Data Repository Overview 

The Standardized Annotated Neurophysiological Data Repository (SANDR) is a collection of 
standardized experimental data featuring test subject measurement via physiological 
instrumentation, with electroencephalographic (EEG) data as the central component across studies.  

1.1 SANDR Summary Document  

The purpose of this document is to provide information sufficient to download and work with 
repository data. The scope of the following dataset descriptions covers the SANDR datasets ready 
for use in large-scale data processing efforts.  

In this document, descriptions of programs, studies and tasks were developed using the associated 
research protocols, design documents, and publications. There are multiple instances of wholesale 
“cut and paste” from source documents into this document, to provide insight into the 
characteristics of the research efforts and the resulting data. 

1.1.1 Revision History 

This document accounts for data ready to use in data analysis activities. As additional datasets are 
added to the repository the summary document will be updated accordingly, and version identifiers 
and release dates will be tracked via Table 1. 

Table 1. Revision History 

Title Version Date 
ARL Experimental Data Set Summary v1.0.0 NOV 2015 
SANDR Data Summary v2.0.0 SEP 2017 
SANDR Data Summary v2.0.1 NOV 2017 
SANDR Data Description v2.1.0 SEP 2018 
SANDR Data Description v2.1.1 MAR 2019 
SANDR Data Description v2.1.2 APR 2019 
SANDR Data Description v2.2.0 MAR 2021 
SANDR Data Description v2.2.1 SEP 2021 
SANDR Data Description  V2.2.2 MAR 2023 

1.1.2 Acknowledgements 

SANDR development was sponsored by the U.S. Army Research Laboratory via the CaN CTA 
contract (number W911NF-10-2-0022). SANDR is populated with data resulting from joint 
ARL-GVSC (formerly TARDEC) studies, CaN CTA, and Autonomy Research Pilot Initiative 
(ARPI) studies. The following individuals are recognized for their contributions to SANDR 
through tool development, data curation, and data analysis: 

Table 2. SANDR Acknowledgements 
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Jonathan Touryan 
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Michael Dunkel 
Stephen Gordon 
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Nima Bigdely-Shamlo 
Christian Kothe 
Tim Mullen 
 

 

 
Scott Makeig 
Tzyy-Ping Jung 
 

 

1.2 Data Repository Description 

A goal of the CaN CTA Advanced Computational Approaches–SANDR (ACA-SANDR) project 
was to produce a large collection of well-annotated, synchronized data for shared analysis 
efforts. Moreover, given the complexity of real-world research, SANDR is intended to be a 
resource for supporting complex, large-scale analyses. Figure 1-1 illustrates the difference 
between the traditional path for data processing through publication, as compared with the 
resources added through the ACA-SANDR project, and in this example, analyzed as part of a big 
data analysis project, with EEG data called LARG. 

 

Figure 1-1. Traditional EEG Analysis Path versus Big Data Analysis 
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SANDR is currently hosted via the CaN CTA Consortium Data Server (C3DS), which features a 
user-friendly front-end for browsing and searching the repository. C3DS accounts must be 
approved by ARL, and will be established by the system administrator. The POC information is: 

 

1.2.1 Data Standardization Process 

The SANDR datasets have been curated via a standardization process known as the “ARL Big 
Data for Human Sensing” (ABDHS) to support large-scale, cross-study analysis. The standards 
were adopted via collaborative efforts within the CaN CTA program, and applied to several 
“legacy” datasets that ARL produced in past research efforts that included neuroimaging. The 
pipeline steps are reflected in Figure 1-2. 

 
Figure 1-2. Big Data for Human Sensing EEG Pipeline Process 

The ABDHS EEG pipeline is designed to manage the complexity involved with multi-lab and 
multi-study data analysis efforts by virtue of EEG data standardization. Through the application 
of common event nomenclature, a common EEG data structure, and common data organization 
schemes, automated pipeline tools can perform EEG data cleaning and validation checks to 
prepare the data for analysis. The pipeline is implemented through a set of standards and tools 
(identified in Table 3) that are applied to a study dataset in a series of stages (Raw, Level 0, 
Level 1, and Level 2), as shown in the system architecture depicted in Figure 1-3. The stages are 
described in the following subsections. 

ARL Authorization for C3DS account
Jon Touryan
410-278-4329
jonathan.o.touryan.civ@mail.mil

C3DS System Administration
Bret Kellihan (DCS Corp.)
571-227-6284
bkellihan@dcscorp.com
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Table 3. ABDHS EEG Pipeline Tools 

Tool Name Definition Availability 
MATLAB A multi-paradigm numerical computing 

environment 
https://www.mathworks.com/products/matlab.html 

EEGLAB A MATLAB toolbox for processing EEG 
data and other physiological signals; defines 
the EEG data structure 

https://sccn.ucsd.edu/eeglab/download.php 

DART The Data Annotation and Reprocessing Tool 
is a GUI-based MATLAB tool for processing 
Raw study data from a specific study 

Formal request to the Army Research Laboratory 

HED Hierarchical Event Descriptor is a set of 
descriptor tags partially adopted from 
BrainMap/NeuroLex ontologies and 
organized hierarchically 

http://www.hedtags.org/ 

ESS EEG Study Schema is a standardized data 
specification and toolset for organizing EEG 
study data 

http://www.eegstudy.org/ 

 
PREP The PREP (preprocessing) Pipeline is a 

MATLAB-based tool that performs the 
following EEG data preprocessing: 

1. Line noise removal 
2. Identify bad channels 
3. Interpolate bad channels 
4. Re-reference to average of all 

channels 

http://vislab.github.io/EEG-Clean-Tools/ 

 

https://www.mathworks.com/products/matlab.html
https://sccn.ucsd.edu/eeglab/download.php
http://www.hedtags.org/
http://www.hedtags.org/
http://www.eegstudy.org/
http://vislab.github.io/EEG-Clean-Tools/
http://vislab.github.io/EEG-Clean-Tools/
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Figure 1-3. Big Data for Human Sensing System Architecture 

1.2.1.1 Raw: Data directly from instrumentation 

Raw Data is that which is transferred directly from the hardware platforms following data 
collection. It can also include files that required post-processing due to the nature of the collection 
method. For example, verbal communication that was captured via audio files and subsequently 
transcribed to produce representative text files may also be found within Raw data. 
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Figure 1-4. Sample Raw Data Folder (TX16) 

Raw data can consist of numerous files for each recording session, or very few. The Raw dataset 
shown in Figure 1-4 is an example of a study that features numerous raw data files, which are a 
result of the complexity of the experimental objectives and the corresponding data collection 
system. Figure 1-5 depicts the system architecture used for collecting the TX16 experimental data. 

 
Figure 1-5. TX16 Data Collection System Architecture  
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1.2.1.2 STDL0: Event Processing 

The objective in converting Raw data to STDL0 data is to establish searchable discrete events of 
interest that can be used to interpret phenomena within the subject’s physiological (e.g. EEG) data. 
Processing involves up to four main steps: 

1) Insertion of EEG channel location data, if necessary  
2) Synchronization of all data streams (achieved through common sync marker values 

logged on all data collection platforms), if necessary 
3) Derivation of discrete events (which are marked with study-specific numeric event 

codes), if necessary 
4) Application of a common vocabulary through event tag strings, which are based on the 

numeric event codes  

1.2.1.2.1 EEG Channel Location Data 

An essential process at STDL0 is to ensure that the EEG channel location data contains accurate 
coordinates based on the data collection equipment that was used. The BioSemi systems, for 
example, have specific channel coordinates for their caps based on the number of channels. The 
BioSemi cap specifications can be found at https://www.biosemi.com/headcap.htm. 

 
Figure 1-6. BioSemi Channel Location Remap 

https://www.biosemi.com/headcap.htm
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This information was developed by Dr. Kay Robbins at UTSA to develop a robust MATLAB 
algorithm for generating correct data for BioSemi EEG channel locations based on a function call 
from the STDL0 software, known as the Data Alignment and Reprocessing Tool (DART). After 
the call to “remap_channels”, as shown in Figure 1-6, the EEG.chanlocs structure contains the 
information necessary to support STDL2 processing. 

1.2.1.2.2 Data Synchronization 

Some datasets are made available for inclusion in SANDR with data synchronization already 
completed, and numeric event codes written to the EEG.event structure. Other datasets require 
these steps to be performed as part of the STDL0 conversion.  

The first synchronization step is to sync EEG data to the simulation data, and then sync eye-
tracking data to the time-adjusted EEG data. Both sync processes use the same generic function 
that aligns data streams through a precise match of all sync markers that appear in both streams. 
From the subsequent time differentials, the following data elements are produced as function return 
values for use in synchronizing the two data stream: offset, drift, and jitter.  

Time alignment is accomplished by applying the offset and the drift, bringing the first set of event 
times in line with the second. Figure 1-7 depicts a plot of sync markers from the EEG data stream 
in blue (y value = 2), and SIM data stream in red (y value = 1), with the x-axis representing time 
in seconds. 

 
Figure 1-7. EEG to SIM Sync Plot (TX16) 

 
The derivation of events at STDL0 is sometimes necessary when performing calculations that are 
too computationally expensive to complete in real-time during data collection (for example, line-
of-sight to targets), or when desiring to reference future events in order to more accurately tag 
present events (such as in perception tasks). For these datasets, the derived events are assigned 
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numeric event codes, and written to a structure called EventData in the “_SIM” file. When reaching 
the point at which unique numeric event codes are associated with each event, and all events 
instances are marked with event codes, a dataset is ready to add text-based tags.  

1.2.1.2.3 Event Derivation and Marking 

Deriving events for a study requires examination of the research objectives, and specification of a 
series of event types that are based on the tasks performed by study participants. Figure 1-8 lists 
exemplar subject tasks from SANDR studies for the visual, auditory, and psychomotor modalities.  

1.2.1.2.4 Task Tagging 

When subjects perform experimental tasks, they are interacting with the research environment in 
some prescribed manner. For instance, in order to scan for targets, objects defined as targets must 
be presented to the subject for visual perception for a period beginning with onset and ending with 
offset. Note that the term “target” is study-specific. If the subject has also been instructed to report 
targets, they might do so by pressing a button, or by verbalizing the report. 

 
Figure 1-8. Task Paradigm and Tags 
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Task tags attempt to document items involved, actions taken, and senses used by subject in task, 
as well as the effect of the task (or event) on the subject. 

1.2.1.2.5 Event Tagging 

Text-based event descriptors are selected from the Hierarchical Event Descriptor (HED) library, 
or ontology (shown in Figure 1-9), which is a controlled vocabulary for tagging events. Multiple 
tags can be assigned to an event, each describing a specific aspect. The hierarchical format 
facilitates event searches at varying scopes, from the general to the very specific, in support of 
cross-study analysis efforts. Figure 1-10 illustrates events related to a vehicle perturbation in a 
driving study, along with the associated HED tags that specify several attributes about the event. 

 

Figure 1-9. Hierarchical Event Descriptor 

When the ontology is found to be lacking in the required breadth or depth to describe adequately 
the details of events, it can be expanded with new definitions through discussions with Dr. Kay 
Robbins (Kay.Robbins@utsa.edu) and Dr. Nima Bigdely-Shamlo (nima.bigdely@intheon.io). 

mailto:Kay.Robbins@utsa.edu
mailto:nima.bigdely@intheon.io
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Figure 1-10. Sample HED Tags 

Perturbation
Onset

Driver
Correction
Onset

and
Perturbation
Offset

Driver
Correction
Complete

Ready for
event

Ready for
event

Associated HED Tags

A

B

C

An increasing perpendicular force is applied from the left or right until the driver corrects

Perturbation event

A. Perturbation Onset
Event/Category/Experimental stimulus, Attribute/Onset, Event/Label/RightPerturbOnset, 
Event/Long name/Vehicle | Perturbation | Right | Onset, Event/Description/Beginning of a 
perturbation that moves the vehicle to the right via perpendicular force, 
(Item/Object/Vehicle/Car, Attribute/Object control/Perturb,  Attribute/Direction/Right)

B. Driver Correction Onset
Event/Category/Participant response, Attribute/Onset, Event/Label/DriverCorrectOnset, 
Event/Long name/Behavioral | PerturbationResponse | Manual | Onset, 
Event/Description/Criteria for ending a perturbation achieved either ABS Heading Error more 
than 5.1566 degrees OR Driver is steering into the perturbation and STEER ANGLE more 
than 4 degrees, (Participant ~ Action/Control vehicle/Drive/Correct ~ 
Item/Object/Vehicle/Car)

B. Perturbation Offset
Event/Category/Experimental stimulus, Attribute/Offset, Event/Label/RightPerturbOffset, 
Event/Long name/Vehicle | Perturbation | Right | Offset, Event/Description/End of a 
perturbation that moves the vehicle to the right via perpendicular force, 
(Item/Object/Vehicle/Car, Attribute/Object control/Perturb,  Attribute/Direction/Right)

C. Driver Correction Offset
Event/Category/Participant response, Attribute/Offset, Event/Label/DriverCorrectOffset, 
Event/Long name/Behavioral | PerturbationResponse | Manual | Offset, 
Event/Description/Criteria for ending a perturbation achieved either ABS Heading Error more 
than 5.1566 degrees OR Driver is steering into the perturbation and STEER ANGLE more 
than 4 degrees, (Participant ~ Action/Control vehicle/Drive/Correct ~ 
Item/Object/Vehicle/Car)
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Tags within HED can be browsed using an application called CTAGGER. A user interface (see 
Figure 1-11) provides access to the various levels of the hierarchy, and select attributes that 
correspond to events being tagged. 

 
Figure 1-11. Sample HED Tag 

Event tagging by the SANDR team at ARL involves identifying appropriate HED tags for each 
event, and then adding those tags to a spreadsheet that contains the numeric events codes as well. 
From that spreadsheet, a tag file is produced by a MATLAB script customized for the events that 
appear within each study. This file contains lookup data for each event, where the text of a tag is 
associated with the numeric event code. 

Completed tag files can be validated using the online HED Validator, shown in Figure 1-12, to 
ensure that all of the event tags can be parsed and understood (i.e., are properly formatted), and 
utilize terminology defined in the selected HED version. The URL is http://netdb1.cs.utsa.edu/hed. 
As an alternative, validation may be accomplished using the MATLAB® function pop_tsvhed.m, 

http://netdb1.cs.utsa.edu/hed
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included in the suite of HED tagging tools HEDTools-master, authored by Jeremy Cockfield at 
The University of Texas at Austin. 

 

Figure 1-12. HED Validator 

 
Once a HED tag file is validated, the HED tags can be applied by using DART, which contains 
processing to loop through events within the EEG.event structure, and uses the numeric event code 
as an index to look up the corresponding HED tag from the tag file. Each HED tag is then written 
to the corresponding event within the EEG.event structure, as shown in Figure 1-13. 
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Figure 1-13. EEG.event Structure with HED Tags 

At the end of the STDL0 process, the data folder contains a “*_EEG” file for every Raw dataset, 
and possibly a “*_SIM” and “*_EYE” file as well. Figure 1-14 shows the TX16 STDL0 folder, 
with “*_SIM.mat” and “*_EEG.set” files.  

 
Figure 1-14. Sample STDL0 Data Folder (TX16) 

Also shown are par2 files, which are produced for each STDL0 output file (EEG, SIM, and 
EYE). The par2 files provide checksum verification after a file transfer. Batch files that run via 
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command window can be run to verify the clean transfer of MATLAB files, and will even 
regenerate the original file if the transferred copy is compromised. There are also MATLAB 
wrapper functions that have been developed to perform par2 generation and 
verification/regeneration by invoking the batch files using parameterized inputs. The use of par2 
files can be especially helpful if it is not possible or convenient to download the data again from 
the C3DS. 

1.2.1.3 STDL1: Containerization 

The STDL0 files contain event-level tags, but more information about study-level aspects of the 
data needs to be added, and the data files need to be organized by subject (test participant) and 
session. The EEG Study Schema defines a container that characterizes EEG datasets in the form 
of an XML manifest (also generated as a JSON file). 

STDL1 processing requires as input the set of STDL0 EEG files and study metadata that specifies 
the following: date and time information for all EEG files, study full description, study short 
description, study label(s), task label(s), task description(s), task paradigm(s), task attributes, 
experimenters, publications, funding organization, point of contact, project name (of the study), 
IRB protocol information, and copyright statement. Also processed at STDL1, if available, is the 
subject demographics data. 

Data recording contents are organized according to a hierarchy, with the following levels (see 
Figure 1-15) 

• Study 
A set of data recording sessions, collected to answer one or more related scientific 
questions. 
 

• Session 
A single application of an EEG headset (cap on  cap off) for one or more subjects 
recorded within a single study. A session contains data from subjects performing one or 
more tasks. 
 

• Task 
A task contains a single paradigm, and in combination, they allow answering scientific 
questions investigated in the study. Each paradigm features a set of related events. 
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Figure 1-15. Containerization and Metadata 
The container is generated as a level_1 folder with a series of session folders beneath, as shown in 
Figure 1-16. The session folders contain a set of EEG files for all tasks (runs) performed within 
the session by a subject, or a team of subjects being recorded simultaneously and working together 
on the same tasks. Each numbered folder contains the EEG recordings collected within a session, 
and the task name is embedded within the resulting EEG file name, which is modified when being 
copied from STDL0 to STDL1 (with no changes to the file contents). 

 
Figure 1-16. ESS Folder Organization 

The study_description.xml file summarizes all of the data passed as STDL1 input, organized in an 
XML tree. Information such as recording_parameter_set, for example, is derived during the 
STDL1 conversion process, providing groups of related information such as number of EEG 
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channels, sampling rate, and modalities included in the channel data. Each data recording, 
organized by session, is then linked with a specific recording_parameter_set, establishing a 
relationship between data and metadata. Figure 1-17 represents the view of a session, and 
associated folder contents, within a STDL1 folder. 

 
Figure 1-17. Sample STDL1 Data Folder (TX16) 

1.2.1.4 STDL2: Re-referencing and bad channel detection 

STDL2 processing provides standardized robust referencing, line noise removal, and bad channel 
detection. Furthermore, bad channel data are removed, and the contents replaced with interpolated 
data from neighboring electrodes. Note that the size of each STDL2 EEG file is significantly 
greater than its STDL1 counterpart. This is because EEG channel data are saved at STDL2 using 
double precision floats instead of single precision, due to the extensive calculations performed at 
this level. 

Comprehensive data quality reports are generated at STDL2 as pdf files, and placed in the session 
folder along with each EEG file. The contents of the report are summarized in Figure 1-18. 
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Figure 1-18. STDL2 EEG Data Quality Report 
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Figure 1-19. Sample STDL2 Data Folder (TX16) 

The STDL2 data folders are very similar to the structure of the STDL1 folders, although there is 
additional information at STDL2, as can be seen in Figure 1-19. 

1.2.1.5 STDL2 256: Down-sampled STDL2 EEG (256Hz) 

A processing stage that occurs outside the formal pipeline is one that supports the ease of use of 
SANDR data. It is advantageous to have a replica set of all SANDR EEG files with a 256 Hz 
sampling rate to facilitate faster downloads and processing times when testing analysis efforts or 
building machine learning models. Thus, it is a goal of the SANDR project to generate an 
additional down-sampled 256 Hz EEG file for all files at STDL2 if the native file is recorded at a 
higher sampling rate.  

1.2.1.6 Data transfer and par2 

When copying EEG files from one disk to another it is possible for files to become corrupted in 
the process. To help prevent data loss, each dataset has associated par2 files that can be used either 
to verify files (or folders) after copy, or to rebuild files (or folders) if they are corrupted. 

The tools that perform the verification and/or file or folder rebuild are on the C3DS, at 
/Tools/par2/Batch programs and /Tools/par2/MATLAB functions. Usage is provided via 
internal documentation (i.e., comments in the source files). 
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1.4 Summary of Datasets  

A list of the publicly available data currently standardized and archived in the repository, including 
dataset metrics, are provided in Table 4 and Table 5. 

Table 4. SANDR Public Data Sets 

 
 

Table 5. SANDR Public Data Metrics 

Public Server
Subjects : Data sets Access Location

ARL_BCIT_CalibrationDriving BCIT T1/T2/T3 XC 206 : 247       1        /ARL_BCIT
ARL_BCIT_BaselineDriving BCIT T1/T2/T3 XB 128 : 128       1        /ARL_BCIT
ARL_BCIT_TrafficComplexity BCIT T2 X2 29 : 30          1        /ARL_BCIT
ARL_BCIT_SpeedControl BCIT T2 X6 32 : 63          1        /ARL_BCIT
ARL_BCIT_AuditoryCueing BCIT T2 X7 17 : 34          1        /ARL_BCIT
ARL_BCIT_MindWandering BCIT T2 X8 21 : 60          1        /ARL_BCIT
ARL_BCIT_RSVPBaseline BCIT T3 X1 27 : 27          1        /ARL_BCIT
ARL_BCIT_RSVPExpertise BCIT T3 X2 10 : 51          1        /ARL_BCIT
ARL_BCIT_BasicGuardDuty BCIT T3 X3 21 : 21          1        /ARL_BCIT
ARL_BCIT_AdvancedGuardDuty BCIT T3 X4 27 : 27          1        /ARL_BCIT
ARL_CANCTA_RWNVDEDP Real-world driving study (dyads) 44 : 43          1        /ARL_CANCTA_RWNVDEDP
ARL_HDCOG_TX14 Target Detection/UGV Control 20 : 147       1        /ARL_HDCOG_TX14
ARL_HDCOG_TX15 Target Detection/UGV Control 14 : 94          1        /ARL_HDCOG_TX15
ARL_HDCOG_TX15Oddball Oddball  (Gabor patch) 8 : 8            1        /ARL_HDCOG_TX15
ARL_HDCOG_TX16 Vehicle Commander multi-tasking 14 : 81          1        /ARL_HDCOG_TX16
ARL_HDCOG_TX16AuditoryVisual Auditory vs Visual task (Scenario 7) 13 : 13          1        /ARL_HDCOG_TX16
ARL_HDCOG_TX17A Driver Fatigue / racetrack 13 : 20          1        /ARL_HDCOG_TX17A
ARL_ARPI_TX20 Measures of Trust in Automation 24 : 119       1        /ARL_ARPI_TX20
ARL_ARPI_TX22 Measures of Trust in Automation 17 : 68          1        /ARL_ARPI_TX22
ARL_ICB_CT2WS RSVP CT2WS 17 : 72          1        /ARL_ICB_CT2WS
ARL_ICB_RSVP RSVP Insurgent-Civil ian 16 : 51          1        /ARL_ICB_RSVP
ARL_EEGCS_VEP From EEG Comparison study 18 : 18          1        /ARL_VEP
DCS_CANCTA_FT Finger Tapping 14 : 14          1        /DCS_CANCTA_FT
DCS_CANCTA_ODE Operator Dynamics of Event Appraisal 17 : 67          1        /DCS_CANCTA_ODE
NCTU_CANCTA_RWN_VDE DSS+PVT+MD+DF 17 : 855       1        /NCTU_CANCTA_RWN_VDE
TNO_CANCTA_ACC Adaptive Cruise Control 21 : 45          1        /TNO_CANCTA_ACC
TNO_CANCTA_FLERP Fixation-locked ERP 15 : 42          1        /TNO_CANCTA_FLERP

27 studies 820       2,445    27      https://dev.cancta.net/C3DS25 27 27 27 27
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1

1 1 1 1 1
1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

(256Hz)

1 1 1 1 1

SANDR Data Sets
Experimental Data Set

by
Organization

Experimental Data 
Totals

Standardized Level C3DS
Raw 0 1 2 2

1 1 1 1
1 1 1 1 1
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Number Hours Data Number of Number of Number of Number of
Num Num of of Size Event Zero-instance Event Types Total Event

Subjects : Sessions Datasets EEG (GB) Types Events Types Used Instances

ARL_BCIT_CalibrationDriving 206 : 247 247          63.56 380.80 123            103                20                97,971       
ARL_BCIT_BaselineDriving 128 : 128 128          131.47 883.40 123            95                   28                168,288     
ARL_BCIT_TrafficComplexity 29 : 29 29            22.87 50.63 123            86                   37                30,737       
ARL_BCIT_SpeedControl 32 : 32 63            44.76 99.32 246            227                19                108,594     
ARL_BCIT_AuditoryCueing 17 : 17 34            26.00 57.85 246            221                25                102,524     
ARL_BCIT_MindWandering 21 : 21 60            30.05 69.26 369            326                43                80,792       
ARL_BCIT_RSVPBaseline 27 : 27 27            31.83 271.20 46              11                   35                517,597     
ARL_BCIT_RSVPExpertise 10 : 51 51            59.72 493.10 230            196                34                1,014,929 
ARL_BCIT_BasicGuardDuty 21 : 21 21            19.07 165.00 40              17                   23                20,270       
ARL_BCIT_AdvancedGuardDuty 27 : 27 27            23.87 191.10 40              11                   29                27,285       
ARL_CANCTA_RWNVDEDP 44 : 43 43            129.77 33.85 406            98                   308             346,679     
ARL_HDCOG_TX14 20 : 20 147          28.42 15.52 368            254                114             55,254       
ARL_HDCOG_TX15 14 : 14 94            18.68 10.38 736            617                119             44,358       
ARL_HDCOG_TX15Oddball 8 : 8 8               1.48 0.82
ARL_HDCOG_TX16 14 : 14 81            26.16 14.52 486            269                217             280,015     
ARL_HDCOG_TX16AuditoryVisual 13 : 13 13            3.49 1.94
ARL_HDCOG_TX17A 13 : 13 20            15.95 10.94 18              5                     13                12,271       
ARL_ARPI_TX20 24 : 24 119          26.32 85.26 516            387                129             78,045       
ARL_ARPI_TX22 17 : 17 68            19.70 46.95 258            150                108             102,348     
ARL_ICB_CT2WS 17 : 18 72            17.23 7.97 192            72                   120             51,190       
ARL_ICB_RSVP 16 : 16 51            6.39 39.77 192            91                   101             136,234     
ARL_EEGCS_VEP 18 : 18 18            2.82 3.26 7                7                  10,322       
DCS_CANCTA_FT 14 : 14 14            17.83 27.65 91              6                     85                29,190       
DCS_CANCTA_ODE 17 : 17 67            18.74 15.30 186            116                70                10,686       
NCTU_CANCTA_RWN_VDE 17 : 855 855          207.62 129.80 79              79                364,735     
TNO_CANCTA_ACC 21 : 15 45            20.50 83.40 177            70                   107             70,120       
TNO_CANCTA_FLERP 15 : 21 42            23.02 16.56 45              5                     40                159,508     

27        820     1,740        2,444  1,037.34  3,205.55          5,343               3,433            1,910   3,919,942 

SANDR Public Data Metrics
Experimental Data Set

by
Organization

STDL2 Data
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SANDR data includes EEG data, and other modalities as needed for each research objective, as 
listed in Table 6. 

Table 6. SANDR Instrumentation Summary 

 
  

EMG ECG HR EDA Actigraph
System Num Sampling System Sampling System System System System System

Type Channels Rate Type Rate Type Type Type Type Type

ARL_BCIT_CalibrationDriving BioSemi 64 & 256 1024 & 2048 SMI RED250 250 Hz
ARL_BCIT_BaselineDriving BioSemi 64 & 256 1024 & 2048 SMI RED250 250 Hz
ARL_BCIT_TrafficComplexity BioSemi 64 1024 SMI RED250 250 Hz
ARL_BCIT_SpeedControl BioSemi 64 1024 SMI RED250 250 Hz
ARL_BCIT_AuditoryCueing BioSemi 64 1024 SMI RED250 250 Hz
ARL_BCIT_MindWandering BioSemi 64 1024 SMI RED250 250 Hz
ARL_BCIT_RSVPBaseline BioSemi 256 1024 SMI RED250 250 Hz
ARL_BCIT_RSVPExpertise BioSemi 256 1024 SMI RED250 250 Hz
ARL_BCIT_BasicGuardDuty BioSemi 256 1024 SMI RED250 250 Hz
ARL_BCIT_AdvancedGuardDuty BioSemi 256 1024 SMI RED250 250 Hz
ARL_CANCTA_RWNVDEDP ABM 24 256 Zephyr Bioharness 3 Zephyr Bioharness 3 Empatica E4 Readiband
ARL_HDCOG_TX14 BioSemi 64 256 faceLAB4 60 Hz
ARL_HDCOG_TX15 BioSemi 64 256 faceLAB4 60 Hz
ARL_HDCOG_TX15Oddball BioSemi 64 256 faceLAB4 60 Hz
ARL_HDCOG_TX16 BioSemi 64 256 faceLAB4 60 Hz
ARL_HDCOG_TX16AuditoryVisual BioSemi 64 256 faceLAB4 60 Hz
ARL_HDCOG_TX17A BioSemi 64 256 SmartEye 60 Hz
ARL_ARPI_TX20 BioSemi 64 1024 & 8192 SmartEye 60 Hz BioSemi BioSemi
ARL_ARPI_TX22 BioSemi 64 1024 SmartEye 60 Hz BioSemi BioSemi
ARL_ICB_CT2WS BioSemi 64 512
ARL_ICB_RSVP BioSemi 64 1024
ARL_EEGCS_VEP BioSemi 64 1024
DCS_CANCTA_FT BioSemi 256 1024
DCS_CANCTA_ODE BioSemi 64 1024 faceLAB4 BioSemi BioSemi BioSemi
NCTU_CANCTA_RWN_VDE Neuro Scan 64 1000 SMI RED Neuro Scan Readiband
TNO_CANCTA_ACC BioSemi 64 2048 BioSemi BioSemi BioSemi
TNO_CANCTA_FLERP BioSemi 32 512 SmartEye

SANDR Public Data Instrumentation
Experimental Data Set

by
Organization

EEG EYE-tracking
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SANDR data also includes a variety of attributes that are associated with the experimental tasks 
and procedures. Some of the datasets overlap with each other due to common paradigms, such as 
RSVP experiments, or common events, such as the various driving experiments. Table 7 
represents a matrix where attributes that apply to a given data set are shown with a green “1”. 

Table 7. SANDR Study Attribute Summary 
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ARL_BCIT_CalibrationDriving 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ARL_BCIT_BaselineDriving 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
ARL_BCIT_TrafficComplexity 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1
0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0
0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1
0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1
0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0
0 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0
1 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Number of Studies : 27     2  25  10  14     6     8     2  13  10     3     7  11  17  12     7     2     7  10  18     1     1     5     7 

DCS_CANCTA_FT
DCS_CANCTA_ODE
NCTU_CANCTA_RWN_VDE
TNO_CANCTA_ACC
TNO_CANCTA_FLERP

ARL_ARPI_TX20
ARL_ARPI_TX22
ARL_ICB_CT2WS
ARL_ICB_RSVP
ARL_EEGCS_VEP

ARL_HDCOG_TX15
ARL_HDCOG_TX15Oddball
ARL_HDCOG_TX16
ARL_HDCOG_TX16AuditoryVisual
ARL_HDCOG_TX17A

ARL_BCIT_RSVPExpertise
ARL_BCIT_BasicGuardDuty
ARL_BCIT_AdvancedGuardDuty
ARL_CANCTA_RWNVDEDP
ARL_HDCOG_TX14

SANDR Study Attributes

ARL_BCIT_SpeedControl
ARL_BCIT_AuditoryCueing
ARL_BCIT_MindWandering
ARL_BCIT_RSVPBaseline
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1.4.1 Repeat subjects 

The BCIT program required data collection at three different locations. Moreover, since each of 
the experiment teams at two of the locations were collecting data for 4 different experiments, some 
of the subjects enrolled multiple times. Thus, the subject numbers for the T2 and T3 experiments 
are “re-used” when the individual participates in more than one experiment within an overall study, 
in order to track the “same brain” when known. Information regarding repeat subjects was made 
available for the data processing team after it was de-identified. Table 8 and Table 9 indicate which 
subjects participated in multiple recording sessions, which means they were in the lab on multiple 
days. A value of “1” indicates valid data exists for the subject performing an experiment task. 

Table 8. SANDR Repeat Subjects for BCIT Program Task 2 

 
Table 9. SANDR Repeat Subjects for BCIT Program Task 3 

 
For the RWNVDEDP program (Section 2.4.1.7), the 44 participants were paired into 22 
driver/passenger dyads, with 40 subjects performing both driver and passenger tasks. Table 10 
indicates which subject was the driver and which was the passenger for each of the 41 missions 
that produced useable data. 

XC XB X2 XC X6 CA X6 CB XC X7 CA X7 CB XC X8 CA X8 CB X8 CC

2013 1 1 1 1 1 1 6 2
2015 1 1 1 1 1 1 1 1 1 9 3
2026 1 1 1 1 1 5 2
2029 1 1 1 1 1 1 6 2
2043 1 1 1 1 1 1 1 1 1 1 10 3
2044 1 1 1 1 1 1 1 1 1 1 10 3
2046 1 1 1 1 1 1 6 2
2048 1 1 1 1 1 1 1 1 1 1 10 3
2051 1 1 1 1 1 1 1 1 1 1 10 3
2055 1 1 1 1 1 1 1 1 1 1 10 3
2056 1 1 1 1 1 1 1 1 1 1 10 3
2061 1 1 1 1 1 1 1 1 1 1 10 3
2063 1 1 1 1 1 1 1 1 1 1 10 3

Subject
ID

Total
Runs

Total
Sessions

1 session 1 session 1 session 1 session

T2 X2 Experiment T2 X6 Experiment T2 X7 Experiment T2 X8 Experiment

Total Total
XC XB X1 XC X2 XC X2 XC X2 XC X2 XC X2 XC X2 XC XB X3 XC XB X4 Runs Sessions

3103 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 7
3109 1 1 1 1 1 1 6 2
3115 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 7
3120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 7
3201 1 1 1 1 1 1 1 1 1 1 10 5
3202 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 18 8
3203 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 7
3204 1 1 1 1 1 1 1 1 1 1 1 1 1 13 6
3205 1 1 1 1 1 1 1 1 1 1 10 5
3206 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 7
3208 1 1 1 1 1 1 1 1 1 1 1 1 1 13 6
3210 1 1 1 1 1 1 1 1 1 1 1 1 1 13 6
3303 1 1 1 1 1 1 6 2
3306 1 1 1 1 1 1 6 2
3308 1 1 1 1 1 1 6 2
3311 1 1 1 1 1 1 6 2
3320 1 1 1 1 1 1 1 1 1 9 3
3402 1 1 1 1 1 5 2
3409 1 1 1 1 1 1 6 2
3412 1 1 1 1 1 1 6 2
3413 1 1 1 1 1 1 6 2
3422 1 1 1 1 1 1 6 2

1 session 1 session 1 session 1 session 1 session

Subject
ID

T3 X3 Experiment T3 X4 Experiment

1 session 1 session 1 session 1 session

T3 X1 Experiment T3 X2 Experiment (longitudinal)
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Table 10. Driver and Passenger Subjects for RWNVDEDP Experiments 
Mission Dyad Driver Passenger File Date File Time Subject 

1 1 3032 1021 20171213 81453 Driver 
1 1 3032 1021 20171213 81453 Passenger 
2 2 8019 7097 20171214 122546 Driver 
2 2 8019 7097 20171214 122546 Passenger 
3 3 5089 4086 20171219 82504 Driver 
3 3 5089 4086 20171219 82504 Passenger 
4 4 8114 8077 20171219 124011 Driver 
4 4 8114 8077 20171219 124011 Passenger 
5 5 2093 4069 20171220 123558 Driver 
5 5 2093 4069 20171220 123558 Passenger 
6 5 4069 2093 20180118 83907 Driver 
6 5 4069 2093 20180118 83907 Passenger 
7 2 7097 8019 20180118 125740 Driver 
7 2 7097 8019 20180118 125740 Passenger 
8 1 1021 3032 20180119 105948 Driver 
8 1 1021 3032 20180119 105948 Passenger 
9 3 4086 5089 20180129 125523 Driver 
9 3 4086 5089 20180129 125523 Passenger 
10 4 8077 8114 20180202 81945 Driver 
10 4 8077 8114 20180202 81945 Passenger 
11 7 8197 4275 20180207 150945 Driver 
11 7 8197 4275 20180207 150945 Passenger 
12 6 5189 4146 20180208 80343 Driver 
12 6 5189 4146 20180208 80343 Passenger 
13 8 8164 6128 20180209 102158 Driver 
13 8 8164 6128 20180209 102158 Passenger 
14 9 1139 4126 20180209 134025 Driver 
14 9 1139 4126 20180209 134025 Passenger 
15 10 2153 4207 20180214 123400 Driver 
15 10 2153 4207 20180214 123400 Passenger 
16 11 4251 1292 20180215 94227 Driver 
16 11 4251 1292 20180215 94227 Passenger 
17 12 5245 3284 20180220 94404 Driver 
17 12 5245 3284 20180220 94404 Passenger 
19 14 5226 2265 20180223 124236 Driver 
19 14 5226 2265 20180223 124236 Passenger 
20 8 6128 8164 20180301 90750 Driver 
20 8 6128 8164 20180301 90750 Passenger 
21 6 2093 4069 20180301 134021 Driver 
21 6 2093 4069 20180301 134021 Passenger 
22 15 2417 7427 20180307 91956 Driver 
22 15 2417 7427 20180307 91956 Passenger 
23 16 3303 3323 20180307 131548 Driver 
23 16 3303 3323 20180307 131548 Passenger 
24 18 5334 6351 20180309 85939 Driver 
24 18 5334 6351 20180309 85939 Passenger 
25 13 6172 8234 20180309 124700 Driver 
25 13 6172 8234 20180309 124700 Passenger 
26 22 5442 3333 20180314 84648 Driver 
26 22 5442 3333 20180314 84648 Passenger 
27 17 9407 7392 20180314 131617 Driver 
27 17 9407 7392 20180314 131617 Passenger 
28 11 1292 4251 20180315 94051 Driver 
28 11 1292 4251 20180315 94051 Passenger 
29 14 4126 1139 20180315 131539 Driver 
29 14 4126 1139 20180315 131539 Passenger 
30 20 3455 3437 20180319 91633 Driver 
30 20 3455 3437 20180319 91633 Passenger 
31 19 2468 2387 20180319 130018 Driver 
31 19 2468 2387 20180319 130018 Passenger 
32 21 8314 9346 20180322 130856 Driver 
32 21 8314 9346 20180322 130856 Passenger 
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33 12 3284 5245 20180323 92327 Driver 
33 12 3284 5245 20180323 92327 Passenger 
34 15 7427 2417 20180323 131933 Driver 
34 15 7427 2417 20180323 131933 Passenger 
35 10 4207 2153 20180326 121215 Driver 
35 10 4207 2153 20180326 121215 Passenger 
36 7 4275 8197 20180326 152522 Driver 
36 7 4275 8197 20180326 152522 Passenger 
37 9 5089 4086 20180327 125823 Driver 
37 9 5089 4086 20180327 125823 Passenger 
38 16 1292 4251 20180328 130715 Driver 
38 16 1292 4251 20180328 130715 Passenger 
39 21 9346 8314 20180404 93712 Driver 
39 21 9346 8314 20180404 93712 Passenger 
41 22 3333 5442 20180409 93131 Driver 
41 22 3333 5442 20180409 93131 Passenger 
42 18 6351 5334 20180409 125638 Driver 
42 18 6351 5334 20180409 125638 Passenger 
43 19 2387 2468 20180410 125635 Driver 
43 19 2387 2468 20180410 125635 Passenger 

 

The ARPI program featured two studies, TX20 and TX22. Those data collection events featured 
some overlap of test participants, but it would require further investigation of the research 
induction paperwork in order to determine the corresponding subject ID number of the 
participants that were measured in both studies. 

 

2 Study Descriptions 

This section describes each dataset currently in the ARL SANDR, organized by research program. 

2.1 Brain-Computer Interface Technology (BCIT) 
The field of Brain-Computer Interaction Technologies may provide revolutionary Soldier-system 
capabilities. Much of the current research in these technologies tends to focus on developing 
communication and control technologies in the medical domain for assisting paralyzed or 
disabled individuals. These medical technologies augment function for these impaired clinical 
populations, but for healthy individuals these technologies provide inferior performance to using 
a manual interface. However, recent advancements show clear potential for developing 
technologies that support healthy populations and Soldier-system interaction by combining 
advancements in mobile brain signal technologies, signal processing methods and techniques, 
and low-power, lightweight computational capabilities. 

The recent growth in this research area has led to the initiation of a Brain-Computer Interaction 
Technologies (BCIT) research /program as part of the U.S. Army Research Laboratory’s Major 
Laboratory Program in Neuroscience, with the goal of developing and translating BCIT for 
Army-relevant applications.  Within this context, a major focus area of the BCIT program is the 
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development and validation of a fatigue-based performance prediction system for Army-relevant 
tasks.   

2.1.1 BCIT Program Summary 

This program provides for extended time-on-task measurements of subjects across various 
paradigms involving vigilance tasks, including driving (remaining and responding to vehicle 
perturbations), Rapid-Serial Visual Presentation (RSVP) target detection and acknowledgement 
based on images of designated targets and non-targets, and a guard duty assignment to control 
entry to a restricted area based on simulated identification information and requests for access.  

The Calibration Driving and Baseline Driving tasks were performed by nearly all participants 
within the program, across three studies and laboratories, to generate sufficient data for large-
scale analysis. The relatively short Calibration Driving runs collected at the beginning of the 
session can be contrasted with longer Baseline Driving runs collected later in the session, for 
each subject, as well as in the aggregate. 

The three objectives of this program were to 1) develop a calibration and experimentation 
solution for fatigue-based performance prediction, 2) conduct experiments that will support ARL 
in the evaluation of the reliability and generalizability of a previously published fatigue-based 
driver performance prediction methodology (Lin, Wu, Jung, Liang, Huang, EURASIP Journal on 
Applied Signal Processing, 2005) in increasingly realistic driving tasks, 3) conduct experiments 
that will support ARL in the evaluation of the reliability and generalizability of this methodology 
to non-driving Army-relevant tasks. In support of these objectives, a set of three related 
experiments were specified, and conducted, at three different laboratories.  

2.1.1.1 BCIT Program Task 1 (T1) 

The Validation Phase experiment was designed to verify the driving simulator as a data collection 
platform for measurable driving behaviors using perturbation events and real-time calculations to 
measure lane deviation and heading deviation against the vehicle heading, and steering angle. 

Perturbations (depicted in Figure 2-1) are a lateral force that increases in magnitude through a step 
function to “push” the vehicle to the left or the right until the subject responds, at which point the 
perturbation force scales down at a rate 3 times faster than it grows during onset. The subject 
response to a perturbation is known as a “driver correction” event, which begins when the subject 
turns into the direction of the force with a steering angle greater than 4 degrees. 
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Perturbation events have the following metrics of interest: 

Reaction Time (RT):  

Time from onset of perturbation (force > 0) to beginning of subject response  

Response Time (or, Driver Correction Time): 

Time from beginning to end of driver correction, where: 

Driver correction begins when subject turns into perturbation force at steer 
angle > 4 degrees, and 

Driver correction ends when (ABS(steering angle) < 1 degree && 
ABS(heading deviation) < 0.75 degrees) 

 

 

Figure 2-1. Vehicle Perturbation 

 

 

2.1.1.1.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL/TARDEC 
Protocol Number: ARL-20098-10051 (amended from TX18) 
Protocol Name: “Army Relevant EEG Based Driver Performance Prediction” 
Contract: W911NF-10-D-0002-0003 
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2.1.1.1.2 Location 

This study was conducted at the ARL HRED laboratory located at Aberdeen Proving Ground, MD. 

2.1.1.1.3 Subjects 

A total of 25 subjects were recruited from the local government and contractor workforce. 

2.1.1.1.4 Apparatus 

Subjects performed driving tasks using a desktop driving simulator with steering wheel and foot 
pedals for vehicle control, (Real Time Technologies; Dearborn, MI), a video refresh rate of 900 
Hz, and a vehicle state data sampling rate of 100 Hz (for log files).  

They were instrumented with a BioSemi 64 (+8) EEG channel system with 4 eye and 2 mastoid 
channels recorded, with a sampling rate of 2048 Hz. Eye Tracking data was collected using a 
Sensomotoric Instruments (SMI) REDEYE250 system, with a 250 Hz sampling rate. 

2.1.1.1.5 Demographics 

Demographic information provided with this dataset includes subject ID, gender, birth year, age, 
dominant hand, height, and weight. 

2.1.1.1.6 ARL BCIT T1 Experiment (Validation Phase) Tasks 

The Validation Phase experiment was the only experiment within the study. For this experiment, 
subjects performed the following tasks during their session: 

Calibration Driving (XC):  
Duration: 15 minutes 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries. 
Note: Speed controlled automatically by the driving simulator. 

 
Baseline Driving (XB):  
Duration: 60 minutes, or 45 minutes. 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries and maintain speed per speed 
limit signs along the road. 

 
During this phase, the perturbation force was adjusted after the 8th subject (of 25 total) to make 
them more noticeable. In addition, the duration of various driving “blocks” for the Baseline 
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Driving runs was explored. Subjects 1-8 drove 6 blocks of 10 minutes, with surveys administered 
between blocks. Subject 9 drove 2 blocks of 30 minutes with surveys administered between blocks, 
and subjects 10-26 (with 14 omitted) drove 1 block of 45 minutes, and were prompted verbally for 
subjective fatigue measures at the mid-point of the run.  

2.1.1.1.7 POC 

Brent Lance (brent.j.lance.civ@army.mil), ARL, Primary Investigator 
Scott Kerick (scott.e.kerick.civ@army.mil), ARL, Associate Investigator 
Justin Brooks (justin.r.brooks16.civ@army.mil), ARL, Data Analysis 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Engineer 
Mike Dunkel (mdunkel@omi.com), DCS Corp., Data Engineer 

2.1.1.2 BCIT Program Task 2 (T2) 

The study to Extend Lin et al. (2005) Approach to More Complex Driving Environments included 
a series of driving experiments, all of which featured perturbation events, but varied in other 
significant ways. 

2.1.1.2.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL/Teledyne 
Protocol Number: ARL 12-040 
Protocol Name: “EEG-Based Measures of Driver Performance in Realistic Simulations" 
Contract: W911NF-10-D-0002-0003 

2.1.1.2.2 Location 

This study was conducted at the Teledyne laboratory located at their facility in Durham, NC. 

2.1.1.2.3 Subjects 

A total of 78 unique subjects were recruited from among the local population, via advertising. 
These subjects were recorded for 100 sessions, with some subjects participating in multiple 
experiments within the study. 

2.1.1.2.4 Apparatus 

Subjects performed driving tasks using a desktop driving simulator with steering wheel and foot 
pedals for vehicle control, (Real Time Technologies; Dearborn, MI), a video refresh rate of 900 
Hz, and a vehicle state data sampling rate of 100 Hz (for log files).  

mailto:brent.j.lance.civ@mail.mil
mailto:scott.e.kerick.civ@mail.mil
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They were instrumented with a BioSemi 64 (+8) EEG channel system with 4 eye and 2 mastoid 
channels recorded, with a sampling rate of 2048 Hz. Eye Tracking data was collected using a 
Sensomotoric Instruments (SMI) REDEYE250 system, with a 250 Hz sampling rate. 

2.1.1.2.5 Demographics 

Demographic information provided with this dataset includes subject ID, gender, birth year, age, 
dominant hand, height, and weight. 

2.1.1.2.6 ARL BCIT T2 Experiments 

Program Task 2 was comprised of four driving experiments, conducted using the same apparatus, 
but with variations in stimuli and expected subject behaviors. 

2.1.1.2.6.1 Traffic Complexity (X2) Tasks 

For this experiment, subjects performed the Calibration Driving task first, followed by the Baseline 
Driving task, and the Traffic Complexity task, with the sequence counter-balanced across subjects. 

Calibration Driving (XC):  
Duration: 15 minutes 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries. 
Note: Speed controlled automatically by the driving simulator. 
 
Baseline Driving (XB):  
Duration: 45 minutes 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries and maintain speed per speed 
limit signs along the road. 
 
Traffic Complexity (X2):  
Duration: 45 minutes 
Environment: Long, straight highway, visually complex environment, featuring oncoming 
traffic and traffic in the direction of travel (in the passing lane). Also had pedestrians on 
either side of the road, but not crossing the road. Figure 2-2 shows sample images of 
environmental entities contributing to the visual complexity. 
Task requirements: Steer vehicle to maintain lane boundaries and maintain speed per speed 
limit signs along the road. 
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Figure 2-2. Traffic Complexity Environment 

2.1.1.2.6.2 Speed Control (X6) Tasks 

For this experiment, subjects performed the Calibration Driving task first, followed by two 
conditions of the Speed Control task, with the sequence counter-balanced across subjects. 

Calibration Driving (XC):  
Duration: 15 minutes 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries. 
Note: Speed controlled automatically by the driving simulator. 
 
Speed Control (X6):  
Duration: 45 minutes 
Environment: Long, straight highway in a visually sparse environment. 
Condition A Task requirements: Steer vehicle to maintain lane boundaries. 
Speed controlled automatically by the driving simulator (i.e., cruise control). 
Condition B Task requirements: Steer vehicle to maintain lane boundaries and maintain 
speed per speed limit signs along the road. 

2.1.1.2.6.3 Auditory Cueing (X7) Tasks 

For this experiment, subjects performed the Calibration Driving task first, followed by two 
conditions of the Auditory Cueing task, with the sequence counter-balanced across subjects. 

Calibration Driving (XC):  
Duration: 15 minutes 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries. 
Note: Speed controlled automatically by the driving simulator. 
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Auditory Cueing (X7):  
Duration: 45 minutes 
Environment: Long, straight highway, visually sparse environment 
Condition A and B Task requirements: Steer vehicle within lane boundaries and control 
speed per speed limit signs. 
Condition A Stimulus: A short audio tone is played at random intervals throughout the run 
(not correlated with perturbation events). There’s a check every 0.5 seconds to determine 
whether or not to play a cue. The chance of playing a cue is 5.625%. The probability of a 
cue happening is based on the average number of cues in the non-random condition, with 
the objective being to have a similar number of cues in both conditions. 
Condition B Stimulus: A short audio tone is played prior to 90% of the scheduled 
perturbations, with the time delta between audio and perturbation onset varying randomly 
within a 2-second window.  

2.1.1.2.6.4 Mind Wandering (X8) Tasks 

For this experiment, subjects performed the Calibration Driving task first, followed by three 
conditions of the Mind Wandering task, with the sequence counter-balanced across subjects. 

Calibration Driving (XC):  
Duration: 15 minutes 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries. 
Note: Speed controlled automatically by the driving simulator. 
 
Mind Wandering (X8):  
Duration: 30 minutes 
Environment: Long, straight highway, visually complex environment with environmental 
traffic in both directions, including police cars, which represent visual targets. 
Condition A, B, and C Task requirements: Steer vehicle within lane boundaries and control 
speed per speed limit signs. Press a button on the steering wheel when a police car is 
viewed. 
Condition A Stimulus: Continuous audio is played during the run, which features task-
related content (driving safety podcast) with external focus. 
Condition B Stimulus: Continuous audio is played during the run, which features task-
unrelated content (sport/news podcast) with external focus. 
Condition C Stimulus: Continuous audio is played during the run, which features 
mindfulness content (meditation podcast) with internal focus. 
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2.1.1.2.7 POC 

Scott Kerick (scott.e.kerick.civ@army.mil), ARL, Primary Investigator 
Javier Garcia ( javier.o.garcia.civ@army.mil), ARL, Data Analysis 
Matthew Jaswa (mjaswa@dcscorp.com), System Developer 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Engineer 
Mike Dunkel (mdunkel@omi.com), DCS Corp., Data Engineer 

2.1.1.3 BCIT Program Task 3 (T3) 

The study to Extend Lin et al. (2005) Approach to Non-Driving Tasks included a series of four 
target detection experiments, featuring two different paradigms. 

2.1.1.3.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL/SAIC 
Protocol Number: ARL 12-041 (SAIC 2012040301) 
Protocol Name: “Performance Prediction in Visual Tasks” 
Contract: W911NF-10-D-0002-0003 

2.1.1.3.2 Location 

This study was conducted at the SAIC laboratory located at their facility in Louisville, CO. 

2.1.1.3.3 Subjects 

A total of 59 unique subjects were recruited from among the local population, via advertising. 
These subjects were recorded for 88 sessions. Some subjects participated in a longitudinal 
experiment, and some subjects participated in multiple experiments within the study. 

2.1.1.3.4 Apparatus 

Subjects performed driving tasks using a desktop driving simulator with steering wheel and foot 
pedals for vehicle control, (Real Time Technologies; Dearborn, MI), a video refresh rate of 900 
Hz, and a vehicle state data sampling rate of 100 Hz (for log files). Subjects also performed RSVP 
and Guard Duty tasks using different, custom-designed software applications hosted on the same 
computer system. 

They were instrumented with a BioSemi 256 (+8) EEG channel system with 4 eye and 2 mastoid 
channels recorded, with a sampling rate of 2048 Hz. Eye Tracking data was collected using a 
Sensomotoric Instruments (SMI) REDEYE250 system, with a 250 Hz sampling rate. 

mailto:scott.e.kerick.civ@mail.mil
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2.1.1.3.5 Demographics 

Demographic information provided with this dataset includes subject ID, gender, birth year, age, 
dominant hand, height, and weight. 

2.1.1.3.6 ARL BCIT T3 Experiments 

Program Task 3 was comprised of two Rapid Serial Visual Presentation (RSVP) target detection 
experiment, and two guard duty experiments modeled from real-world tasks. 

2.1.1.3.6.1 RSVP Baseline (X1) Tasks 

RSVP Baseline study sessions include subjects performing the following tasks: 

Calibration Driving (XC):  
Duration: 15 minutes 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries. 
Note: Speed controlled automatically by the driving simulator. 

 
Baseline Driving (XB):  
Duration: 60 minutes (6 10-minute blocks) 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries and maintain speed per speed 
limit signs along the road. 

 
RSVP Baseline (X1):  
Duration: 60 minutes (6 10-minute blocks) 
Environment: Rapid Serial Visual Presentation of common objects as targets, including: 
chairs, containers, doors, posters, stairs 
Task requirements: Press a button when a designated target is recognized 
Stimulus requirements:  

Different targets specified for each of blocks 1-5 
The target for block 6 target = block 1 target 
The 5 objects used in the images were chairs, containers, doors, posters, and stairs 

 
Subjects performed the Calibration Driving task first, followed by the Baseline Driving task, and 
the RSVP Baseline task, with the sequence counter-balanced across subjects. 

The Calibration Driving task and the Baseline Driving task are performed within this study to 
support the collection of data of a large number of subjects performing the same tasks for large-
scale data analysis. 
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For the RSVP Baseline task, subjects were asked to view a series of images. The images were 
displayed in 6 blocks of 10 minutes, with a break in between block of approximately 2 minutes. 
For each block, one of the aforementioned objects was designated as the target, and images of the 
remaining objects were used as distractors. The subject was instructed to press a button each time 
a target image was perceived. Images contained chairs, containers, doors, posters, and stairs. One 
of these objects would be designated as the target for a given block, and the others would represent 
non-targets (for that block). The target was different for each block 1-5, and the target for block 6 
was the same as it was for block 1. The sequence of target objects assigned to blocks 1-6 was 
counter-balanced across subjects. Figure 2-3 and Figure 2-4 contain samples from the image 
database.  

 

Figure 2-3. Images of the Five Target Types for BCIT RVSP Experiments (X1 and X2) 

 

 
Figure 2-4. Multiple Images of One Target Type for BCIT RVSP Experiments (X1 and X2) 

The set of images used for RSVP stimuli were taken specifically for use in BCIT T3 experiments 
X1 and X2. Each picture has an associated set of attributes (see Figure 2-5) which specify 
information such as image luminance and target occlusion. There is a target viewer application, 
provided with the image database, which makes the attributes accessible via lookup. They can also 
be extracted programmatically, via the MATLAB Image Processing Toolbox (or possibly other, 
similar tools). 
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Figure 2-5. Target Image Attributes for BCIT RVSP Experiments (X1 and X2) 

The stimuli are stored as jpg files with the image identifier as the name. This information is part 
of the event-related data stored in the EEG.event structure within the EEG file (see Figure 2-6). 

Also stored in EEG.event is a 5-digit event code, in the column labeled ‘type’. These codes are 
defined in the data specification spreadsheet, “BCI Data Specification vnn.xls”, where represents 
the version number. The event code can be interpreted by reading from the event table, from left 
to right. For example, referencing Figure 2-7, it can be determined that an event code of 13110 (as 
in line 9 in Figure 2-6) represents the following: 

Scenario | Present Image | Target | Correct classification (the last digit is not used in this case). 
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Figure 2-6. BCIT RVSP (X1 and X2) EEG.event Data 
 

 

Figure 2-7. BCIT RVSP Event Codes 

The indicator “correct classification” is based on post-processing results that determined whether 
the subject correctly identified the image as a target. 

11440.jpg

1 Scenario n Event Subtype n ScenarioType n Demarcation
1 Execute Scenario 1 Baseline 0 not used 1 Onset

2 Expertise 2 Offset

n TargetObject n Demarcation
2 Present Block of Images 1 Object Stairs 0 not used 1 Onset

2 Object Containers 2 Offset
3 Object Posters
4 Object Chairs
5 Object Doors

n ImageContent n ImageClassification 0 not used
3 Present Image 1 Target 1 Correct Classification instantaneous

2 Non-target 2 Incorrect Classification
3 Indeterminate Classification

2 Behavioral n Event Subtype n ButtonHand n ButtonPushResult n Demarcation
1 Button Push 1 Right Button 1 Indeterminate 1 Onset

2 Left Button 2 False Alarm 2 Offset
3 Valid Detection
4 Repeated Detection

3 External n Event Subtype n InstructionType n Demarcation
1 Instruction 1 Take Survey 0 not used 1 Onset

2 Offset

n SystemFailureType n Demarcation
2 System Error 0 Other 0 not used 1 Onset

1 Experimental System Failed 2 Offset
2 Arduino Failed
3 EEG System Failed
4 Eye Tracking System Failed

VariantEventSubtype DemarcationEventType EventSubvariant
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2.1.1.3.6.2 RSVP Expertise (X2) Tasks 

RSVP Expertise study sessions include subjects performing the following tasks: 

Calibration Driving (XC) (days 1-5) 
Duration: 15 minutes 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries. 
Note: Speed controlled automatically by the driving simulator. 
 
Baseline Driving (XB) (day 1 only): 
Duration: 60 minutes (6 10-minute blocks) 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries and maintain speed per speed 
limit signs along the road. 
 
RSVP Expertise (X2) (days 1-5):  
Duration: 60 minutes (6 10-minute blocks) 
Environment: Rapid Serial Visual Presentation of common objects as targets, including: 
chairs, containers, doors, posters, stairs 
Task requirements: Press a button when a designated target is recognized 
Stimulus requirements:  

The target was different for each day of data collection (1-5), and within each day, 
the target was the same for all blocks (1-6)  
Designated target objects for a day were chairs, containers, doors, posters, and stairs  
The sequence of target-to-day assignments was counter-balanced across subjects 

 
Subjects performed the Calibration Driving task first, followed by the Baseline Driving task, and 
then the RSVP Expertise task on day 1 of the 5-day study. On days 2-5, subjects performed the 
Calibration Driving task followed by the RSVP Expertise task. 

The Calibration Driving task and the Baseline Driving task are performed within this study to 
support the collection of data of a large number of subjects performing the same tasks for large-
scale data analysis. 

For the RSVP Expertise task, subjects were asked to view a rapid serial visual presentation (RSVP) 
of images, all of which contained one or more of the following objects: chairs, containers, doors, 
posters, or stairs. The same image database used for the stimuli in the RSVP Baseline experiment 
(X1) was used for this experiment. The images were displayed in 6 blocks of 10 minutes, with a 
break in between block of approximately 2 minutes. One of the aforementioned objects was 
designated as the target for all six blocks, and images of the remaining objects were used as 
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distractors. The subject was instructed to press a button each time a target image was perceived. 
For a subject's four remaining data collection sessions, each individual would return on a different 
day at roughly the same time of day for each session and begin with the Calibration Driving task. 
For each of the 5 RSVP Expertise recording sessions, a different target was designated, and used 
for all 6 image presentation blocks in the task. 

 

Figure 2-8. BCIT RVSP Stimuli-Response Correlation 

The relationship between stimuli and subject response was ascertained during post-processing 
using a Minimum Reaction Time threshold of 0.3 seconds, and a Maximum Reaction Time 
threshold of 1.0 seconds. These threshold values create a “time window”, when added to the time 
of the target image presentation that the subject response (button press) must occur within in order 
to be considered a valid detection. Target images that have a corresponding button press within 
the reaction time range are considered valid detections, and the target stimulus is associated with 
the button press event via the image id. Target images that have no corresponding button press 

STD_ARL_BCIT_v2.0.0 BCIT RSVP Baseline : T3 M003

SIMTime EEGLatency EventType EventSubtype EventVariant EventSubvariant Demarcation CollapsedEventCode GID ImageFilename

195.847 318340Scenario Execute Scenario Baseline RSVP Images Onset 11101

195.847 318340Scenario Present Block of Images Object Doors Onset 12501

195.847 318340Scenario Present Image Non-target Correct Classification 13210 204321220.jpg

196.030 318528Scenario Present Image Non-target Correct Classification 13210 203721212.jpg

196.214 318716Scenario Present Image Non-target Correct Classification 13210 175520884.jpg

196.397 318904Scenario Present Image Non-target Correct Classification 13210 215921340.jpg

196.582 319093Scenario Present Image Non-target Correct Classification 13210 235321547.jpg

196.766 319281Scenario Present Image Non-target Correct Classification 13210 174320870.jpg

196.949 319469Scenario Present Image Target Incorrect Classification 13120 840411440.jpg

197.133 319657Scenario Present Image Non-target Correct Classification 13210 151020622.jpg

197.316 319845Scenario Present Image Non-target Correct Classification 13210 251021718.jpg

197.500 320033Scenario Present Image Non-target Correct Classification 13210 103320045.jpg

197.684 320221Scenario Present Image Non-target Correct Classification 13210 185620995.jpg

197.867 320409Scenario Present Image Non-target Incorrect Classification 13220 180720943.jpg

198.051 320597Scenario Present Image Non-target Correct Classification 13210 125520325.jpg

198.234 320785Scenario Present Image Non-target Correct Classification 13210 216921350.jpg

198.418 320973Scenario Present Image Non-target Correct Classification 13210 177620908.jpg

198.420 320975Behavioral Button Push Right Button False Alarm Onset 21121 180720943.jpg

198.603 321162Scenario Present Image Non-target Correct Classification 13210 189721045.jpg

198.677 321238Behavioral Button Push Right Button False Alarm Offset 21122 0

198.786 321350Scenario Present Image Target Incorrect Classification 13120 818210620.jpg

198.970 321538Scenario Present Image Non-target Correct Classification 13210 240721606.jpg

199.153 321726Scenario Present Image Non-target Correct Classification 13210 124220312.jpg

199.337 321914Scenario Present Image Non-target Correct Classification 13210 166120785.jpg

199.521 322102Scenario Present Image Non-target Correct Classification 13210 232121511.jpg

199.704 322290Scenario Present Image Target Correct Classification 13110 802710107.jpg

199.888 322478Scenario Present Image Non-target Correct Classification 13210 220921390.jpg

200.071 322666Scenario Present Image Non-target Correct Classification 13210 111820165.jpg

200.255 322854Scenario Present Image Non-target Correct Classification 13210 199521161.jpg
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within the reaction time range are considered invalid detections (aka missed targets). When a 
button press occurs and there was no corresponding target image presented within the reaction 
time range from the button press, the response is also deemed an invalid detection (aka false alarm). 
In this case, the subject response is associated with a non-target image using an n-back scheme, 
where n is set to a value of two. The image associated with the false alarm is estimated by 
subtracting the n-back value from the length of the list of non-target images within the reaction 
time range from button press. Each of the three event types described is depicted in Figure 2-8. 

2.1.1.3.6.3 Basic Guard Duty (X3) Tasks 

Basic Guard Duty study sessions include subjects performing the following tasks: 

Calibration Driving (XC):  
Duration: 15 minutes 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries. 
Note: Speed controlled automatically by the driving simulator. 
 
Baseline Driving (XB):  
Duration: 60 minutes (6 10-minute blocks) 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries and maintain speed per speed 
limit signs along the road. 
 
Basic Guard Duty (X3):  
Duration: 50 minutes (10 5-minute blocks) 
Environment: A representative identification card with a face picture and other information 
is displayed alongside another face image. 
Task requirements: Press a button to allow or deny access to a restricted area to the person 
pictured in the screen presentation, possessing the accompanying ID card. 

 
Subjects performed the Calibration Driving task first, followed by the Baseline Driving task, and 
the Basic Guard Duty task, with the sequence counter-balanced across subjects. 

The Calibration Driving task and the Baseline Driving task are performed within this study to 
support the collection of data of a large number of subjects performing the same tasks for large-
scale data analysis. 

The Basic Guard Duty task entailed a serial presentation of replica identification (ID) cards (750 
× 450 pixels) paired with a reference image (300 × 400 pixels). The replica ID cards had eight 
components or fields in addition to a common background. These components were photo, name, 
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date of birth (DOB), date of issue, date of expiration, area access, ID number, bar code and 
watermark. The reference images consisted of color photographs of faces. Both the ID photo and 
reference image were chosen from the Multi-PIE database (Gross, Matthews, Cohn, Kanade, & 
Baker, 2010). This database consists of color photographs (forward facing headshots) of 
individuals taken at different points in time. Therefore, while the ID photo and reference image 
were of the same individual, the images were not identical (e.g., different hairstyle, different 
clothes, different lighting). Figure 2-9 depicts a sample of the task stimulus. 

 
Figure 2-9. Screen Shot of Guard Duty Task (ID Card and Request for Access) 

The task was divided into ten blocks of five minutes each. At the beginning of each block, 
participants were instructed that they were guarding a restricted area that required a particular letter 
designation on the ID card for access (e.g., area C access required). Participants were asked to 
determine if the individual in the image, paired with the corresponding ID card, should have access 
to their restricted area. Some of the ID cards were valid and some were not (e.g., expiration date 
passed, incorrect access area, or photos did not match). Participants were instructed to press either 
an “allow” or “deny” button for each image-ID pairing. The two-alternative forced-choice 
response was self-paced with a maximum time limit of 20 s. If the participants chose to deny 
access, they were subsequently asked to provide a reason. Reasons for denied access were selected 
from a numerical list of five options: 1—incorrect access, 2—expired ID, 3—suspicious DOB, 
4—face mismatch, 5—no watermark. If the participant did not respond within the allotted time, 
the computer forced a “deny” decision. For the Basic Guard Duty task, the restricted area (area A–
E) assigned at the beginning of the first block of images remained unchanged through all ten 
blocks. To maintain consistency across participants, expiration dates were automatically generated 
at the beginning of the experiment to have a symmetrical distribution around the current date. This 
distribution was such that the majority of IDs had expiration dates temporally close to the current 
date (i.e., in the near future or recent past). 
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In each block, the image-ID pairings were presented at one of six different stochastic queuing 
rates, ranging from 1 to 25 per minute (1, 2.5, 10, 15, 20, and 25 per minute). The queuing rate 
varied within each block according to a predefined profile. The rate profile had randomly permuted 
epochs of each queuing rate. Each epoch lasted 30 s with approximately twice as many low rate 
epochs (1 and 2.5 image-IDs per minute) as high. The rate profiles were shifted for each participant 
(Latin square design) so that each rate profile was assigned to every block for at least two 
participants. The current rate was indicated through a processing queue, on the extreme right-hand 
side of the display, notifying each participant how many IDs are waiting to be checked. For slow 
rates, most participants were able to process all IDs in their queue and had periods where they 
were waiting for the next ID (i.e., blank screen). For fast rates, most participants were not able to 
processes IDs as quickly as they were added to the queue, increasing the size of the processing 
queue. IDs in the queue persisted until they were processed by the participant or the block ended. 
At the beginning of the experiment, participants were instructed to correctly process each image-
ID while keeping the queue as short as possible. Whereas the stochastic queuing rate was used to 
increase task realism, incorporating periods of high and low task demand, the dynamic rate itself 
was not explicitly considered an independent factor in the present study. 

All blocks contained the same ratio of valid and invalid image-ID pairings (82% valid, 18% 
invalid). The majority of invalid IDs were due to incorrect access (6%) and expiration (6%) 
whereas the rest were invalid for the other reasons: suspicious DOB (2%), face mismatch (2%), 
no watermark (2%). This second group of invalid IDs served as catch trials to verify that 
participants were examining all fields of the ID. 

2.1.1.3.6.4 Advanced Guard Duty (X3) Tasks 

Advanced Guard Duty study sessions include subjects performing the following tasks: 

Calibration Driving (XC):  
Duration: 15 minutes 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries. 
Note: Speed controlled automatically by the driving simulator. 
 
Baseline Driving (XB):  
Duration: 60 minutes (6 10-minute blocks) 
Environment: Long, straight highway in a visually sparse environment. 
Task requirements: Steer vehicle to maintain lane boundaries and maintain speed per speed 
limit signs along the road. 
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Advanced Guard Duty (X4):  
Duration: 50 minutes (10 5-minute blocks) 
Environment: A representative identification card with a face picture and other information 
is displayed alongside another face image. 
Task requirements: Press a button to allow or deny access to a restricted area to the person 
pictured in the screen presentation, possessing the accompanying ID card. 
 

Subjects performed the Calibration Driving task first, followed by the Baseline Driving task, and 
the Advanced Guard Duty task, with the sequence counter-balanced across subjects. 

The Calibration Driving task and the Baseline Driving task are performed within this study to 
support the collection of data of a large number of subjects performing the same tasks for large-
scale data analysis. 

The guard duty task entailed a serial presentation of replica identification (ID) cards (750 × 450 
pixels) paired with a reference image (300 × 400 pixels). The replica ID cards had eight 
components or fields in addition to a common background. These components were photo, name, 
date of birth (DOB), date of issue, date of expiration, area access, ID number, bar code and 
watermark. The reference images consisted of color photographs of faces. Both the ID photo and 
reference image were chosen from the Multi-PIE database (Gross, Matthews, Cohn, Kanade, & 
Baker, 2010). This database consists of color photographs (forward facing headshots) of 
individuals taken at different points in time. Therefore, while the ID photo and reference image 
were of the same individual, the images were not identical (e.g., different hairstyle, different 
clothes, different lighting). The task was divided into ten blocks of five minutes each. The same 
ID and faces database used for the stimuli in the Basic Guard Duty experiment (X3) was used for 
this experiment. 

At the beginning of each block, participants were instructed that they were guarding a restricted 
area that required a particular letter designation on the ID card for access (e.g., area C access 
required). Participants were asked to determine if the individual in the image, paired with the 
corresponding ID card, should have access to their restricted area. Some of the ID cards were valid 
and some were not (e.g., expiration date passed, incorrect access area, or photos did not match). 
Participants were instructed to press either an “allow” or “deny” button for each image-ID pairing. 
The two-alternative forced-choice response was self-paced with a maximum time limit of 20 s. If 
the participants chose to deny access, they were subsequently asked to provide a reason. Reasons 
for denied access were selected from a numerical list of five options: 1—incorrect access, 2—
expired ID, 3—suspicious DOB, 4—face mismatch, 5—no watermark. If the participant did not 
respond within the allotted time, the computer forced a “deny” decision. The restricted area (area 
A–E) assigned at the beginning of each block was randomly chosen without replacement such that 
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all participants completed two blocks guarding each of the five areas. To maintain consistency 
across participants, expiration dates were automatically generated at the beginning of the 
experiment to have a symmetrical distribution around the current date. This distribution was such 
that the majority of IDs had expiration dates temporally close to the current date (i.e., in the near 
future or recent past). 

In each block, the image-ID pairings were presented at one of six different stochastic queuing 
rates, ranging from 1 to 25 per minute (1, 2.5, 10, 15, 20, and 25 per minute). The queuing rate 
varied within each block according to a predefined profile. The rate profile had randomly permuted 
epochs of each queuing rate. Each epoch lasted 30 s with approximately twice as many low rate 
epochs (1 and 2.5 image-IDs per minute) as high. The rate profiles were shifted for each participant 
(Latin square design) so that each rate profile was assigned to every block for at least two 
participants. The current rate was indicated through a processing queue, on the extreme right-hand 
side of the display, notifying each participant how many IDs are waiting to be checked. For slow 
rates, most participants were able to process all IDs in their queue and had periods where they 
were waiting for the next ID (i.e., blank screen). For fast rates, most participants were not able to 
processes IDs as quickly as they were added to the queue, increasing the size of the processing 
queue. IDs in the queue persisted until they were processed by the participant or the block ended. 
At the beginning of the experiment, participants were instructed to correctly process each image-
ID while keeping the queue as short as possible. Whereas the stochastic queuing rate was used to 
increase task realism, incorporating periods of high and low task demand, the dynamic rate itself 
was not explicitly considered an independent factor in the present study. 

All blocks contained the same ratio of valid and invalid image-ID pairings (82% valid, 18% 
invalid). The majority of invalid IDs were due to incorrect access (6%) and expiration (6%) 
whereas the rest were invalid for the other reasons: suspicious DOB (2%), face mismatch (2%), 
no watermark (2%). This second group of invalid IDs served as catch trials to verify that 
participants were examining all fields of the ID. 

2.1.1.3.7 POC 

Jon Touryan (jonathan.o.touryan.civ@army.mil), System Developer, Researcher, Analyst 
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2.1.3 BCIT Datasets 

A total of 701 datasets were collected across 213 recording sessions, using 162 unique subjects 
from three different laboratories (ARL, Teledyne, SAIC) within the BCIT study. A small portion 
of the data had unrecoverable errors, leaving 688 datasets from 210 recording sessions, with 159 
unique subjects. Of those subjects, 34 participated in multiple sessions, due to either the 
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longitudinal study, signing up for multiple experiments, or both. The subject ID associated with 
each dataset is unique within the BCIT study. 

There are 662 complete datasets, 18 that were interrupted by a system failure, but resumed, and 8 
that were abbreviated runs. The total size of the EEG files is 2,661.36 GB, representing 453.21 
hours of EEG recording. 

2.1.3.1 ARL_BCIT_CalibrationDriving Dataset 

A total of 247 datasets were collected across 247 recording sessions. This data was collected 
from 156 unique subjects, and came from three different laboratories (ARL, Teledyne, SAIC) 
within the BCIT study. The subject ID can be used to identify data from subjects that 
participated in the RSVP Expertise longitudinal study, and those who participated in multiple 
experiments within one of the program tasks. 

All datasets are complete. None were abbreviated or interrupted. The total size of the EEG files 
is 380.80 GB, representing 63.56 hours of EEG recording. 

2.1.3.2 ARL_BCIT_BaselineDriving Dataset 

A total of 128 datasets were collected across 128 recording sessions. This data was collected 
from 109 unique subjects, and came from three different laboratories (ARL, Teledyne, SAIC) 
within the BCIT study. The subject ID can be used to identify data from subjects that 
participated in multiple experiments within one of the program tasks. 

There are 123 complete datasets, 3 that were interrupted by a system failure, but resumed, and 2 
that were abbreviated runs. The total size of the EEG files is 883.40 GB, representing 131.47 
hours of EEG recording. 

2.1.3.3 ARL_BCIT_TrafficComplexity Dataset 

A total of 30 datasets were collected across 30 recording sessions, from 30 unique subjects 
recruited via the Teledyne laboratory. The subject ID can be used to identify data from subjects 
that participated in multiple experiments within program task 2. 

There are 29 complete datasets, and 1 abbreviated run. The total size of the EEG files is 50.63 
GB, representing 22.87 hours of EEG recording. 

2.1.3.4 ARL_BCIT_SpeedControl Dataset 

A total of 63 datasets were collected across 32 recording sessions, from 32 unique subjects 
recruited via the Teledyne laboratory. The subject ID can be used to identify data from subjects 
that participated in multiple experiments within program task 2. 
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There are 58 complete datasets, and 5 abbreviated runs. The total size of the EEG files is 99.32 
GB, representing 44.76 hours of EEG recording. 

2.1.3.5 ARL_BCIT_AuditoryCueing Dataset 

A total of 34 datasets were collected across 17 recording sessions, from 17 unique subjects 
recruited via the Teledyne laboratory. The subject ID can be used to identify data from subjects 
that participated in multiple experiments within program task 2. 

There are 34 complete datasets. None were abbreviated or interrupted. The total size of the EEG 
files is 57.85 GB, representing 26.00 hours of EEG recording. 

2.1.3.6 ARL_BCIT_MindWandering Dataset 

A total of 60 datasets were collected across 21 recording sessions, from 21 unique subjects 
recruited via the Teledyne laboratory. The subject ID can be used to identify data from subjects 
that participated in multiple experiments within program task 2. 

There are 60 complete datasets. None were abbreviated or interrupted. The total size of the EEG 
files is 69.26 GB, representing 30.05 hours of EEG recording. 

2.1.3.7 ARL_BCIT_RSVPBaseline Dataset 

A total of 27 datasets were collected across 27 recording sessions, from 27 unique subjects 
recruited via the SAIC laboratory. The subject ID can be used to identify data from subjects that 
participated in multiple experiments within program task 3. 

There are 23 complete datasets, and 4 that were interrupted by a system failure, but resumed. The 
total size of the EEG files is 271.20 GB, representing 31.83 hours of EEG recording. 

2.1.3.8 ARL_BCIT_ RSVPExpertise Dataset 

A total of 51 datasets were collected across 51 recording sessions, from 10 unique subjects 
recruited via the SAIC laboratory. Each subject was schedule to have data collected on 5 
different days, although 1 subject participated in 6 RSVPExpertise sessions. The subject ID can 
be used to identify data from subjects that participated in multiple experiments within program 
task 3. 

There are 43 complete datasets, and 8 that were interrupted by a system failure, but resumed. The 
total size of the EEG files is 493.10 GB, representing 59.72 hours of EEG recording. 
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2.1.3.9 ARL_BCIT_BasicGuardDuty Dataset 

A total of 21 datasets were collected across 21 recording sessions, from 21 unique subjects 
recruited via the SAIC laboratory. The subject ID can be used to identify data from subjects that 
participated in multiple experiments within program task 3. 

There are 20 complete datasets, and 1 that was interrupted by a system failure, but resumed. The 
total size of the EEG files is 164.80 GB, representing 19.07 hours of EEG recording. 

2.1.3.10 ARL_BCIT_ AdvancedGuardDuty Dataset 

A total of 27 datasets were collected across 27 recording sessions, from 27 unique subjects 
recruited via the SAIC laboratory. The subject ID can be used to identify data from subjects that 
participated in multiple experiments within program task 3. 

There are 25 complete datasets, and 2 that was interrupted by a system failure, but resumed. The 
total size of the EEG files is 191.00 GB, representing 23.87 hours of EEG recording. 

2.2 High Definition Cognition (HDCOG) 
Technological advances can provide revolutionary capabilities, but may also go beyond Soldier 
cognitive capabilities, limiting how effectively advanced capabilities can be used. Design and 
integration of advanced systems and methods that account for how a Soldier’s brain works would 
allow the matching of Soldier capabilities with system capabilities, including the use of real-time 
measures of cognition in systems design. However, traditional methods of cognitive performance 
assessment cannot always provide the objective, real-time understandings of Soldier cognition 
needed to obtain the target performance objectives. Neither the technologies to allow us to 
understand how a Soldier’s brain works in operational environments, nor the techniques to 
integrate such understandings into system design have been fully developed.  Yet emerging 
methods and technologies have been advancing rapidly in recent years and thus are becoming 
ready for assessment and study in concert with exemplar objective systems, to include advanced 
crew interfaces. 

To meet these challenges, the High-Definition Cognition (HD-Cog) in Operational Environments 
Army Technology Objective (Research) (ATO-R) has been initiated as part of the U.S. Army 
Research Laboratory’s Strategic Research Area in Neuroscience, with the goal of enabling more 
objective, direct, and higher-resolution assessment of Soldier cognitive processes to improve 
system design. Within this context, two of the significant focus areas of the HD-Cog ATO-R are 
the development and validation of operationally relevant metrics of Soldier cognitive function 
and techniques to use such metrics in improving systems design. Specifically, the efforts under 
this task order will 1) Integrate necessary hardware and software solutions for the acquisition of 
neurocognitive data sufficient to enable metrics development and experimentation; 2) Investigate 
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techniques for integrating operationally-relevant cognitive metrics into neuroscience-based 
designs to enhance Soldier-system performance; 3) Support the design, development, and 
integration of an experimental scenario for use in joint ARL-TARDEC experimentation aimed at 
deriving and validating operationally-relevant neurocognitive metrics; 4) Transition and integrate 
software provided by ARL research partners for a prototype, multi-screen display for use in 
experimentation to develop an adaptive, attention-centric information interface based upon 
physiological and/or behavioral inputs; and 5) Support ongoing development and testing of an 
initial software implementation of a system that integrates information about mission, 
environment, and Soldier cognitive state to offload the task allocation process from the 
commander of a vehicle crew, balance workload among crew members, and focus the efforts of 
the crew on the most critical mission tasks. 

The efforts of this task fall within the technical areas of the Cognition and Neuroergonomics 
(CaN) Collaborative Technology Alliance (CTA). The purpose of the CaN CTA is to: 1) extend 
the range and depth of known principles of and established methods for performing online 
estimation of the cognitive state, event appraisal, and behavioral intent of Army operators of 
complex systems in military-relevant, non-laboratory environments and 2) explore how the 
principles and methods thus established might best be used to design individualized real-time 
systems to improve situational awareness and decision-making under stress.  The CaN CTA is 
divided into three major technical Thrust Areas (TA): 1) Neurocognitive Performance, 2) 
Advanced Computational Approaches, and 3) Neurotechnologies. First, the integration of 
hardware and software solutions supports all of the CaN CTA TAs inasmuch as these efforts 
underlie the abilities to develop metrics and methods for high-level experimentation.  Second, 
investigation of cognitive metrics and the development of the experimental scenario for metrics 
development and validation supports both TA 1 and TA 2. Third, the goal of the adaptive 
information interface development is to take into account operator attentional state and 
underlying visual processing capabilities for improving event notification, also consistent with 
the focus of TA 1 and TA 3. Finally, the goal of the task allocation system development is to 
provide a system architecture that enables the application of operationally relevant metrics of 
Soldier cognition to improve vehicle crew performance by intelligently allocating tasks among 
the crewmembers, supporting the overall objectives of the CaN CTA. 

2.2.1 HDCOG Program Summary 

Data collection efforts within the HDCOG program consisted of a series of experiments conducted 
using 6-DOF Ride Motion Simulator (RMS) platform within the Ground Vehicle Simulation 



ARL SANDR 
Dataset Summary v2.2.2 

53 

 

Laboratory (GVSL) at the U.S. Army Tank and Automotive Research, Development, and 
Engineering Center (TARDEC) at the Detroit Arsenal in Warren, MI.  

The naming convention for experiments conducted at GVSL is “TARDEC Experiment n” (or 
TXn”, where n is a sequential numeric identifier. HDCOG experiments include TX14, TX15, 
TX16, and TX17.  

The simulation scenarios (target placement and planned vehicle intervention events) were the same 
for TX14 and TX15. 

The objectives of the program were to 1) Integrate necessary hardware and software solutions for 
the acquisition of neurocognitive data;  2) Investigate techniques for integrating operationally-
relevant cognitive metrics into systems design; 3) Support the design, development, and 
integration of a simulation scenario for use in experimentation to develop and validate 
operationally-relevant cognitive metrics; 4) Design and develop a prototype display for use in 
experimentation to develop an attention-centric information interface; and 5) Support ongoing 
development and testing of software for a proof-of-concept demonstration version of a task 
allocation system for vehicle crew workload management. 

2.2.1.1 ARL HDCOG TARDEC Experiment 14 (ARL_HDCOG_TX14) 

This Army’s transition to a leaner, more agile and rapidly deployable force requires the advent of 
autonomous technologies and systems, and more reliance on computers and machines. This move 
from traditional warfare to Future Combat Systems (FCS) represents a shift in the human role, as 
well. Technological advancement has made it so that the role of the user has been transformed 
from active controller to system monitor and manager, intervening only in the case of a problem. 
As such, the soldier’s dependency on robotics technologies, tele-operations, indirect driving and 
autonomy is expected to increase significantly. Additionally, although semi-autonomous driving 
technologies have proven beneficial in aggregate measures of local area awareness (i.e., 
target/threat detection) and vehicle control, it is important to understand the situational trade-offs 
between local area awareness and vehicle control, as situational trade-offs provide the basis for 
developing dynamic task allocation within crewstations. 

2.2.1.1.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL/TARDEC 
Protocol Number: ARL-20098-09021  
Protocol Name: “The Physiological Basis of Local Area Security and Semi-Autonomous 
Driving” 
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2.2.1.1.2 Location 

This study was conducted at TARDEC’s Ride-Motion Simulator (RMS) in Warren, MI. 

2.2.1.1.3 Subjects 

A total of 21 subjects were recruited for this study. There is usable data from 20 subjects. 

2.2.1.1.4 Apparatus 

Subjects performed experiment tasks using a simulated crew-station mounted on the GVSL 
RMS. The vehicle simulation was simulated using high-fidelity vehicle modeling software called 
SimCreator (Real Time Technologies; Dearborn, MI), along with a custom-designed distributed 
system to integration the Crewstation interface, Intelligent Systems Behavior Simulator (ISBS), 
graphics processing for the simulation environment, EEG system, eye-tracking system, and the 
data logging components (see Figure 2-10). 

 

Figure 2-10. TX14 Data Collection System Architecture 

The crew-station featured touch-screen control of an autonomous mobility system (AMS). 
Subjects could engage the system for autonomous movement, or disengage the AMS, and use a 
joystick for drive-by-wire vehicle control. The crewstation interface (see Figure 2-11) also 
contained a target reporting and classification mechanism, and video portals for situational 
awareness. 
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Figure 2-11. TX14 Crewstation Interface 

 
The simulation environment utilized the “Desert Metro” terrain database, which was comprised of 
6 stitched tiles to model a large city with roads, buildings, signs, and other features of a populated 
area. OpenFlight models for humans and vehicles were placed in the environment, following the 
Distributed Interactive Simulation (DIS) protocol, to create 4 unique “scenarios”, each of which 
contained 20 events for the target detection task, and 3 events for the vehicle intervention task. 
They were intended to be statistically equivalent, however, initial analysis showed scenario 3 to 
be an outlier. Thus, the data collected against scenario 3 was removed from the final analyses. 

 
Figure 2-12. TX14 & TX15 Target Detection and Reporting 
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Figure 2-13. TX14 & TX15 Vehicle Intervention 

The vehicle state data sampling rate was 100 Hz, logged along with crew-station interactions (i.e., 
subject behaviors) to aid post-mission analysis. Physiological measurements were also collected, 
with subjects wearing a BioSemi 64 (+8) EEG channel system with 4 eye and 2 mastoid channels 
recorded, with a sampling rate of 256 Hz. Eye Tracking data was collected using a faceLAB 4 
system, with a 60 Hz sampling rate. 

2.2.1.1.5 Demographics 

No demographic data is provided with this dataset. 

2.2.1.1.6 TX14 Tasks 

There was one task specified for this experiment, which is described as follows: 

TX14:  
Duration: ~15 minutes 
 
Environment: Urban environment, representative of a middle-eastern city, included 
buildings, roads, traffic signs, and background features such as vehicles, clutter, etc. 
Humans, both static and in-motion, were placed as targets. Targets emerged in a naturalistic 
manner (i.e., did not “pop up” or “teleport in”), by appearing from around corners or 
through doorways, or by gaining line-of-sight to them as the vehicle rounded corners, etc. 
 
Scenarios: 4 unique sets of target locations and attributes. Event attributes and associated 
simulation models used for each target are defined in the data specification spreadsheet 
that accompanies the data. 
 
Task requirements: Vehicle moves on a fixed route using the AMS through the 
environment while subjects performed target detection and reporting tasks (shown in 
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Figure 2-12. TX14 & TX15 Target Detection and Reporting). At 3 pre-defined locations 
on the route, the road will be blocked (see Figure 2-13) When this occurs, the subject was 
instructed to disengage the AMS and manually control the vehicle around the obstacle, 
then re-engage the AMS. 
 
Condition A: Vehicle motion only 
 
Condition B: Vehicle motion + “noise” (vibration) 
 
Sessions: Each subject was scheduled to perform the TX14 task 8 times on the same day. 
They performed the task under Condition A and Condition B against each of the 4 
scenarios, with the sequence counter-balanced across subjects, 
 

2.2.1.1.7 POC 

Gabriella Larkin (gabriella.b.larkin.civ@army.mil), ARL, Primary Investigator, Analysis 
James A. Davis, ARL, Associate Investigator, Analysis 
Victor Paul (victor.j.paul2.civ@army.mil), GVSL, Associate Investigator 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Engineer 

2.2.1.2 ARL HDCOG TARDEC Experiment 15 (ARL_HDCOG_TX15) 

This Army’s transition to a leaner, more agile and rapidly deployable force requires the advent of 
autonomous technologies and systems, and more reliance on computers and machines. This move 
from traditional warfare to FCS represents a shift in the human role, as well. Technological 
advancement has made it so that the role of the user has been transformed from active controller 
to system monitor and manager, intervening only in the case of a problem. As such, the soldier’s 
dependency on robotics technologies, tele-operations, indirect driving and autonomy is expected 
to increase significantly. Additionally, although semi-autonomous driving technologies have 
proven beneficial in aggregate measures of local area awareness (i.e., target/threat detection) and 
vehicle control, it is important to understand the situational trade-offs between local area 
awareness and vehicle control, as situational trade-offs provide the basis for developing dynamic 
task allocation within crewstations. 

2.2.1.2.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL/TARDEC 
Protocol Number: ARL-20098-09021  

mailto:gabriella.b.larkin.civ@mail.mil
mailto:tjohnson@dcscorp.com
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Protocol Name: “The Physiological Basis of Local Area Security and Semi-Autonomous 
Driving” 

2.2.1.2.2 Location 

This study was conducted at TARDEC’s Ride-Motion Simulator (RMS) in Warren, MI. 

2.2.1.2.3 Subjects 

14 soldier subjects were recruited for this study. 

2.2.1.2.4 Apparatus 

Subjects performed experiment tasks using a simulated crew-station mounted on the GVSL RMS. 
The vehicle simulation was simulated using high-fidelity vehicle modeling software called 
SimCreator (Real Time Technologies; Dearborn, MI).  

The crew-station featured touch-screen control of an autonomous mobility system (AMS). 
Subjects could engage the system for autonomous movement, or disengage the AMS, and use a 
joystick for drive-by-wire vehicle control. The crewstation interface also contained a target 
reporting and classification mechanism, and video portals for situational awareness. 

The vehicle state data sampling rate was 100 Hz, logged along with crew-station interactions (i.e., 
subject behaviors) to aid post-mission analysis. Physiological measurements were also collected, 
with subjects wearing a BioSemi 64 (+8) EEG channel system with 4 eye and 2 mastoid channels 
recorded, with a sampling rate of 256 Hz. Eye Tracking data was collected using a faceLAB 4 
system, with a 60 Hz sampling rate. 

2.2.1.2.5 Demographics 

No demographic data is provided with this dataset. 

2.2.1.2.6 TX15 Tasks 

There were two tasks specified for this experiment, which are described as follows: 

TX15:  
Duration: ~15 minutes 
 
Environment: Urban environment, representative of a middle-eastern city, included 
buildings, roads, traffic signs, and background features such as vehicles, clutter, etc. 
Humans, both static and in-motion, were placed as targets. Targets emerged in a naturalistic 
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manner (i.e., did not “pop up” or “teleport in”), by appearing from around corners or 
through doorways, or by gaining line-of-sight to them as the vehicle rounded corners, etc. 
 
Scenarios: 4 unique sets of target locations and attributes. They were intended to be 
statistically equivalent, however, initial analysis showed scenario 3 to be an outlier. Thus, 
the data collected against this scenario was removed from the formal analyses. 
 
Task requirements: Vehicle moves on a fixed route using the AMS through the 
environment while subjects performed target detection and reporting tasks (shown in 
Figure 2-12. TX14 & TX15 Target Detection and Reporting). At 3 pre-defined locations 
on the route, the road will be blocked (see Figure 2-13) When this occurs, the subject was 
instructed to disengage the AMS and manually control the vehicle around the obstacle, 
then re-engage the AMS. 
 
Condition A: Crewstation video and vehicle motion synchronized 
 
Condition B: Crewstation video and vehicle motion de-coupled; visual feedback briefly 
lags behind motion 
 
Sessions: The first 5 subjects were scheduled to perform the TX15 task 8 times on the same 
day. They performed the task under Condition A and Condition B against scenarios 1, 2, 
3, and 4, with the sequence counter-balanced across subjects. The last 9 subjects were 
scheduled to perform the TX15 task 6 times on the same day. They performed the task 
under Condition A and Condition B against scenarios 1, 2, and 4, with the sequence 
counter-balanced across subjects. 
 
TX15 Oddball:  
Duration: ~15 minutes 
 
Environment: The motion platform was turned off for this task, although the vehicle did 
move through the simulated environment during the test. A view of the (changing) urban 
environment was displayed in the background, and Gabor patch images were displayed as 
overlays on the center screen.  
 
Scenarios:  Standard stimulus images were displayed 88% of the time and oddball images 
were displayed 12% of the time, as shown in Figure 2-14. The standard stimulus consisted 
of a Gabor grating with a green square in the center, and the rare stimulus was a Gabor 
grating with a blue circle in the center. Each stimulus was presented for 250ms in the center 
of the middle crewstation display and separated by 1-1.5s. 
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Figure 2-14. TX15 Visual Oddball Task 

 
Task requirements: Subjects experienced a visual oddball paradigm, which required them 
to discern between oddball images (targets) and other images, and press different buttons 
in each case. 
 
Sessions: The last 9 subjects that were scheduled to perform the TX15 task, also performed 
the TX15_Oddball task, as the last task of the session. 

2.2.1.2.7 POC 

Gabriella Larkin (gabriella.b.larkin.civ@army.mil), ARL, Primary Investigator, Analysis 
James A. Davis, ARL, Associate Investigator, Analysis 
Anthony J. Ries (anthony.j.ries2.civ@army.mil), ARL, Associate Investigator, Analysis 
Kelvin S. Oie, ARL, Associate Investigator, Analysis 
Victor Paul (victor.j.paul2.civ@army.mil), GVSL, Associate Investigator 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Engineer 

2.2.1.3 ARL HDCOG TARDEC Experiment 16 (ARL_HDCOG_TX16) 

Commanders of military vehicles are responsible for allocating the tasks of a mission plan to the 
crewmembers who are operating the vehicle. Within the US Army, the classic approach has been 
to define a role for each crewmember and to predefine the types of tasks that should be assigned 
to each role. This approach has made it possible to design a different task-specific crewstation and 

mailto:gabriella.b.larkin.civ@mail.mil
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to train crewmembers for each role. During a mission, each task maps to exactly one crewmember, 
so there is no confusion about who should perform each task. 

The US Army is currently developing a System of Systems (SoS) containing manned vehicles, 
unmanned vehicles, ground sensors, and Soldiers all working together through an integrated 
network. One of the objectives is to increase Soldier survivability in ground vehicle operations. 
This objective is expected to be accomplished through increased mobility and self-contained 
operations as well as increased reliance on complex information networks, while, at the same time, 
minimizing crew size. The combination of an increased number of tasks for each member and 
fewer crewmembers means that it is essential to manage the task allocation process intelligently. 

Several new technologies are currently being developed to help maximize Soldier performance in 
vehicles. TARDEC is developing a Warfighter Machine Interface (WMI) that allows each 
crewmember to perform almost any mission task. The U.S. Army Human Research and 
Engineering Directorate (HRED) is developing a suite of sensors to measure the physiological and 
cognitive states of Soldiers in operational environments.  

This experiment incorporates two of the underlying computational components that are needed to 
fuel the technical development of the HRED sensor suite. The first includes modifications in the 
simulation design algorithms to increase the realism of the task and provide more interaction with 
and control of the simulated task environment to the participants. The second investigates the 
feasibility of existing algorithms to successfully classify the participant’s mental state, and in 
particular, to discriminate times of high and low fatigue and times of high task difficulty compared 
to times of low task difficulty. Together, these components will enable the development of metrics 
to assess physiological and cognitive states of Soldiers to maximize Soldier performance in 
operational environments. 

2.2.1.3.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL/TARDEC 
Protocol Number: ARL-20098-10051 (ARL 10-051) 
Protocol Name: “Dynamic Classification of Soldier State” 

2.2.1.3.2 Location 

This study was conducted at TARDEC’s Ride-Motion Simulator (RMS) in Warren, MI. 

2.2.1.3.3 Subjects 

A total of 14 subjects were recruited for this study to perform the role of Vehicle Commander 
(VC), which was the subject under study (and wearing the EEG system). An additional 14 
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participants served as the Driver for the VC, controlling the simulated vehicle and communicating 
with the VC via radio headset. The driver was not instrumented or measured during the experiment. 

2.2.1.3.4 Apparatus 

Subjects performed experiment tasks using a simulated crew-station cab mounted on the GVSL 
RMS. The vehicle simulation was simulated using high-fidelity vehicle modeling software called 
SimCreator (Real Time Technologies; Dearborn, MI), along with a custom-designed distributed 
simulation system to integrate the Crewstation interface, Scenario Populator, Event Server 
(recognized trip lines), graphics processing for the simulation environment, EEG system, eye-
tracking system, and the data logging components. While the system architecture diagram shown 
in Figure 1-5 indicates the planned used of a respiration belt and GSR measurement, those devices 
did not make it into the final system configuration. 

The Vehicle Commander (VC) crew-station interface, shown in Figure 2-15, featured touch-screen 
control of 360-degree camera suite bringing continuous video from up to 4 of 6 total cameras at 
one time through the use of multiple video portals. There was also an overview map indicating, in 
real-time, vehicle position and heading within the environment, as well as roadways and buildings.  
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Figure 2-15. TX16 Crewstation Interface 

The VC also wore a radio headset with microphone, and used a plunger button to simulate keying 
the mic before speaking. There were two separate radio networks over which simulated 
communications could be broadcast, allowing for overlap of messages. 

The vehicle state data sampling rate was 100 Hz, logged along with crew-station interactions (i.e., 
subject behaviors) to aid post-mission analysis. Physiological measurements were also collected, 
with subjects wearing a BioSemi 64 (+8) EEG channel system with 4 eye and 2 mastoid channels 
recorded, with a sampling rate of 256 Hz. Eye Tracking data was collected using a faceLAB 4 
system, with a 60 Hz sampling rate. 

2.2.1.3.5 Demographics 

Demographic information provided with this dataset includes subject ID, gender, age, dominant 
hand, vision (normal or corrected to normal), and hearing (normal or corrected to normal). 
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2.2.1.3.6 TX16 Tasks 

There were two tasks specified for this experiment, which are described as follows: 

TX16:  
Duration: ~20 minutes 
 
Environment: Urban environment, representative of a middle-eastern city, included 
buildings, roads, traffic signs, and background features such as vehicles, clutter, etc. 
Humans, both static and in-motion, were placed in the environment. Targets to be reported 
included Iraqi Army soldiers (IA’s), loose weapons in the environment, and individuals 
fitting the description of “BOLO” alert communications. 
 
Scenarios: 6 unique combinations of checkpoints, audio stimuli, and visual stimuli were 
generated to serve as distinct but statistically equivalent scenarios. 
 
Task requirements: Fulfill the role of Vehicle Commander, and assume all relevant 
responsibilities, including: 

1. Route planning (prior to the mission) 
2. Arriving at 3 checkpoints at specified times 
3. Provide navigation commands to driver 
4. 360-degree Local Situational Awareness (LSA) 

a. Report uniformed local armed forces, illicit weapons, and BOLO’s to 
FOB BC 

b. Sample Alert: “BOLO for a female civilian wearing brown clothing and 
a scarf with a blue band” 

c. Sample Report from subject: “Mother Hen this is Blue4: the civilian 
with a blue band on her scarf has been spotted at 4 o’clock near the city 
entrance” 

5. Monitoring and responding to audio communications over two radio networks 
a. Subject responded when addressed by their call sign, “BLUE 4”, and 

when messages were broadcast to “ALL CON” 
6. Report low wires and/or overpasses for future convoy 

a. Subjects reported “Approaching low wires: 3, 2, 1, MARK” 
 

Note: A detailed description of subject tasks is provided in the “TX16 Overview” 
PowerPoint file in the “additional information” folder with the dataset. This file 
was used for subject training. This file should be referenced for a complete 
understanding of what subjects experienced, and what information is available. 
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Sessions: Subjects were scheduled to perform the TX16 task 6 times on the same day; 1 
run each using 6 different scenarios, with the sequence counter-balanced across subjects.  
 
TX16 Auditory Versus Visual Discrimination:  
Duration: ~15 minutes 
 
Environment: The motion platform was turned off for this task, although the vehicle did 
move through the simulated environment during the test. A view of the (changing) urban 
environment was displayed in the background, along with human targets. 
 
Scenarios:  Presentation of stimuli was segregated for this task. During the portion of the 
drive from the FOB to the city edge, audio messages played, and no visual stimuli were 
presented. After reaching the city, the audio messages ceased, and visual stimuli were 
presented in the form of targets (Iraqi Soldiers) and non-targets (civilians and non-human 
objects). 
 
Task requirements: Subjects were required to respond to audio messages which were 
addressed to them (via call sign), and to report targets viewed in the city. 
 
Sessions: Subjects were scheduled to perform the TX16 AuditoryVsVisual task as the last 
task in a session that included all runs of the basic TX16 task. 
 

2.2.1.3.7 POC 

Brent J. Lance (brent.j.lance.civ@army.mil), ARL, Primary Investigator, Analysis 
Jean M. Vettel (jean.m.vettel.civ@army.mil), ARL, Primary Investigator, Analysis 
Victor Paul (victor.j.paul2.civ@army.mil), GVSL, Associate Investigator 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Engineer 
Mike Dunkel (mdunkel@omi.com), DCS Corp., Data Engineer 

2.2.1.4 ARL HDCOG TARDEC Experiment 17A (ARL_HDCOG_TX17A) 

The purpose of this project is to investigate the reliability and generalizability of a neural fatigue-
based driver performance prediction methodology and a neural workload-based driver 
performance prediction methodology on Army-relevant simulated driving tasks. The protocol aims 
to compare the ability of existing algorithms to dynamically classify a participant’s fatigue state 
during the simulated mission.  The protocol also aims to compare the ability of existing algorithms 
to dynamically classify a participant’s mental state at varying levels of task difficulty for the 
participants throughout the simulated mission. For each experimental session, one Soldier 

mailto:brent.j.lance.civ@mail.mil
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participant will be recruited to perform two driving scenarios, one low-activity for evaluation with 
the fatigue-based monitor, and one high-activity for evaluation with the workload-based monitor. 
The majority of the participants will be active duty Soldiers recruited by TARDEC and Joint 
Program Office (JPO) Mine Resistant Ambush Protected (MRAP). The Soldiers will fly to Warren, 
MI to be tested in the Ground Vehicle Simulation Laboratory (GVSL) located at TARDEC at the 
Detroit Arsenal.   

2.2.1.4.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL/TARDEC 
Protocol Number: ARL-20098-10051 
Protocol Name: “Army Relevant EEG Based Driver Performance Prediction” 
Contract: W911NF-10-D-0002-0003 

2.2.1.4.2 Location 

This study was conducted at TARDEC’s Ride-Motion Simulator (RMS) in Warren, MI. 

2.2.1.4.3 Subjects 

A total of 11 subjects were recruited for this study, and 11 sessions of 2 runs per subject yielded 
20 recordings of usable data. 

2.2.1.4.4 Apparatus 

Subjects performed the driving task using a simulated cab and crew-station mounted on the GVSL 
RMS, with a yoke for steering, and pedals for acceleration and braking. The vehicle simulation 
was simulated using high-fidelity vehicle modeling software called SimCreator (Real Time 
Technologies; Dearborn, MI). The simulated environment featured a racetrack design road, 
depicted in Figure 2-16. 

 
Figure 2-16. TX17A Simulated Roadway 
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The vehicle state data sampling rate was 100 Hz, logged along with crew-station interactions (i.e., 
subject behaviors) to aid post-mission analysis. Physiological measurements were also collected, 
with subjects wearing a BioSemi 64 (+8) EEG channel system with 4 eye and 2 mastoid channels 
recorded, with a sampling rate of 256 Hz. Eye Tracking data was collected using a SmartEYE 
system, with a 60 Hz sampling rate. 

2.2.1.4.5 Demographics 

Demographic information provided with this dataset includes subject ID, gender, age, dominant 
hand, vision (normal or corrected to normal), and hearing (normal or corrected to normal). 

2.2.1.4.6 TX17A Tasks 

There was one task specified for this experiment, which is described as follows: 

TX17A:  
Duration: ~45 minutes 
 
Environment: Racetrack (loop) road within a visually sparse environment.  
 
Scenarios: Perturbation events were scheduled under the following conditions throughout 
each run:  

Vehicle must not be currently experiencing a perturbation, AND must be within the 
lane boundaries for 8 seconds; then, a perturbation event is scheduled to begin at a 
randomly selected time between 0 and 2 seconds.  

 
Task requirements: Keep the vehicle within lane boundaries, correcting for perturbations 
as necessary, and otherwise remaining vigilant. 
 
Sessions: Subjects were scheduled to perform the TX17A task 2 times on the same day  

2.2.1.4.7 POC 

Brent J. Lance (brent.j.lance.civ@army.mil), ARL, Primary Investigator, Analysis 
Victor Paul (victor.j.paul2.civ@army.mil), GVSL, Associate Investigator 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Engineer 
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2.2.2 HDCOG Publications 

Jason Metcalfe, Gabriella Larkin, Tony Johnson, Kelvin Oie, Victor Paul, Jams A. Davis. (2010) 
Experimentation and evaluation of threat detection and local area awareness using advanced 
computational technologies in a simulated military environment. Proceedings of SPIE Vol. 
7692 (SPIE, Bellingham, WA, 2010) 769209. 
DOI: 10.1117/12.850516 
 
Anthony Ries, Victor Paul, Marcel Cannon, Kelvin Oie (2010) NEURAL RESPONSES TO 
COMMON AND RARE VISUAL EVENTS DURING A SIMULATED DRIVING 
SCENARIO. Army Science Conference, 2010 
 
Jean Vettel, Brent Lance, Chris Manteuffel, Matthew Jaswa, Marcel Cannon, Tony Johnson, 
Victor Paul, Kelvin Oie (2012) Mission-based Scenario Research: Experimental Design and 
Analysis, Ground Vehicle Systems Engineering Symposium August 9-11 
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiw4eD
1kMDUAhVlDZoKHY3EAwYQFggpMAA&url=http%3A%2F%2Fwww.dtic.mil%2Fget-tr-
doc%2Fpdf%3FAD%3DADA556740&usg=AFQjCNHgYp090gtp1y48GbIHzxuC6tE6QQ&sig
2=SEIUiSLVQpSsgnLSiy2GeQ 
 
L. M. Merino, J. Meng, S. Gordon, B. J. Lance, T. Johnson, V. Paul, K. Robbins, J.M. Vettel, & 
Y. Huang (2013). A bag-of-words model for task-load prediction from EEG in complex 
environments. In 2013 IEEE International Conference on Acoustics, Speech, and Signal 
Processing, ICASSP 2013 - Proceedings (pp. 1227-1231). [6637846] 
DOI: 10.1109/ICASSP.2013.6637846 
http://ieeexplore.ieee.org/document/6637846/ 
 

2.2.3 HDCOG Datasets 

A total of 363 datasets were collected across 82 recording sessions, using 82 unique subjects, 
within the 4 specified experiments. 

The total size of the EEG files is 54.12 GB, representing 94.19 hours of EEG recording. 

2.2.3.1 ARL_HDCOG_TX14 Dataset 

A total of 147 datasets were collected across 20 recording sessions, from 20 unique subjects 
recruited via the GVSL.  

The total size of the EEG files is 15.52 GB, representing 28.42 hours of EEG recording. 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiw4eD1kMDUAhVlDZoKHY3EAwYQFggpMAA&url=http%3A%2F%2Fwww.dtic.mil%2Fget-tr-doc%2Fpdf%3FAD%3DADA556740&usg=AFQjCNHgYp090gtp1y48GbIHzxuC6tE6QQ&sig2=SEIUiSLVQpSsgnLSiy2GeQ
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiw4eD1kMDUAhVlDZoKHY3EAwYQFggpMAA&url=http%3A%2F%2Fwww.dtic.mil%2Fget-tr-doc%2Fpdf%3FAD%3DADA556740&usg=AFQjCNHgYp090gtp1y48GbIHzxuC6tE6QQ&sig2=SEIUiSLVQpSsgnLSiy2GeQ
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiw4eD1kMDUAhVlDZoKHY3EAwYQFggpMAA&url=http%3A%2F%2Fwww.dtic.mil%2Fget-tr-doc%2Fpdf%3FAD%3DADA556740&usg=AFQjCNHgYp090gtp1y48GbIHzxuC6tE6QQ&sig2=SEIUiSLVQpSsgnLSiy2GeQ
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwiw4eD1kMDUAhVlDZoKHY3EAwYQFggpMAA&url=http%3A%2F%2Fwww.dtic.mil%2Fget-tr-doc%2Fpdf%3FAD%3DADA556740&usg=AFQjCNHgYp090gtp1y48GbIHzxuC6tE6QQ&sig2=SEIUiSLVQpSsgnLSiy2GeQ
http://ieeexplore.ieee.org/document/6637846/
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2.2.3.2 ARL_HDCOG_TX15 Dataset 

A total of 91 datasets were collected across 14 recording sessions, from 14 unique subjects 
recruited via the GVSL. This total includes 88 complete datasets, and 3 abbreviated datasets. 

The total size of the EEG files is 10.38 GB, representing 18.68 hours of EEG recording. 

2.2.3.3 ARL_HDCOG_TX15_Oddball Dataset 

A total of 8 datasets were collected across 8 recording sessions, from 8 unique subjects recruited 
via the GVSL as part of the TX15 experiment. The “oddball” experiment was included as the 
final task performed by TX15 subjects in their sessions. 

The total size of the EEG files is 1.48 GB, representing 0.82 hours of EEG recording. 

2.2.3.4 ARL_HDCOG_TX16 Dataset 

A total of 81 datasets were collected across 14 recording sessions, from 14 unique subjects 
recruited via the GVSL. This total includes 68 complete datasets, and 13 abbreviated datasets. 

The total size of the EEG files is 26.16 GB, representing 14.52 hours of EEG recording. 

2.2.3.5 ARL_HDCOG_TX16_AuditoryVsVisual Dataset 

A total of 13 datasets were collected across 13 recording sessions, from 13 unique subjects 
recruited via the GVSL as part of the TX16 experiment. This special comparison of segregated 
stimuli types (audio only first, then visual only) was included as the final task performed by 
TX16 subjects in their sessions. 

The total size of the EEG files is 3.49 GB, representing 1.94 hours of EEG recording. 

2.2.3.6 ARL_HDCOG_TX17A Dataset 

A total of 20 datasets were collected across 11 recording sessions, from 11 unique subjects 
recruited via the GVSL. 

The total size of the EEG files is 10.94 GB, representing 15.95 hours of EEG recording. 

2.3 Institute for Collaborative Biotechnologies (ICB) 
The Institute for Collaborative Biotechnologies (ICB) is a University Affiliated Research Center 
(UARC) primarily funded by the United States Army. Headquartered at the University of 
California, Santa Barbara (UCSB) and in collaboration with MIT, Caltech and industry partners, 
ICB's interdisciplinary approach to research aims to enhance military technology by 
transforming biological systems into technological applications. 

https://en.wikipedia.org/wiki/University_Affiliated_Research_Center
https://en.wikipedia.org/wiki/United_States_Army
https://en.wikipedia.org/wiki/University_of_California,_Santa_Barbara
https://en.wikipedia.org/wiki/University_of_California,_Santa_Barbara
https://en.wikipedia.org/wiki/MIT
https://en.wikipedia.org/wiki/Caltech


ARL SANDR 
Dataset Summary v2.2.2 

70 

 

2.3.1 ICB Program Summary 

The ICB's research aim is to model biological mechanisms for use in military materials and 
tools. Quoting Army Research Office program manager Robert Campbell, "The inspiration for 
the ICB comes from the fact that biology uses different mechanisms to produce materials and 
integrated circuits for high-performance sensing, computing and information processing, and 
actuation than are presently used in human manufacturing." Much research is focused on 
evaluating biomolecular sensors, bio-inspired materials and energy, biodiscovery tools, bio-
inspired network science, and cognitive neuroscience through the disciplines of cellular and 
molecular biology, materials science, chemical engineering, mechanical engineering, and 
psychology. 

2.3.1.1 RSVP Cognitive Technology Threat Warning System (CT2WS) Experiment 
(ARL_ICB_CT2WS) 

The goal of this research effort is to investigate and define perceptual and cognitive processes 
and neural networks used to allocate visual attentional resources while multi-tasking. This 
information can then be exploited to enhance adaptive interface technologies that will facilitate 
superior allocation of cognitive resources and minimize distraction.  

Indirect vision and multiple screen displays are an integral part of the Army’s future systems. 
These advances in technology represent both the opportunity to further military (and industrial) 
capabilities and an all the more critical need to ensure the cognitive compatibility of these new 
technological feats. For example, multiple screen displays possess obvious advantages, such as 
the potential for displaying more information. The caveat to this opportunity is that while more 
information may result in enhanced situation awareness (SA), increased information presentation 
requires a higher degree of monitoring and vigilance, and is associated with a higher cognitive 
load. Vigilance as a cognitive process is of particular importance in the military setting, from the 
radar screens of fighter pilots in the sky to infantrymen’s local area awareness on the ground. 
These displays provide a unique opportunity in cognitively compatible design, to alleviate the 
burden that vigilance places on neuro-cognitive processes.  Therefore, a focus on increased SA 
capabilities must be tempered by an understanding of human neuro-cognitive limitations. Using 
human attention as a central construct and organizing principle in the design and enhancement of 
computation, communication, and other information systems can result in superior information 
management and an overall enhancement of user capabilities. One potential application for such 
a system would involve the classification of attentional/cognitive state based on non-invasive 
physiological measurements. The system can then dynamically assign and reassign different 
tasks based upon the physiological assessment of user state. 

The general goal of this research is to evaluate the effect that both central and peripheral cues 
used to alert the user to secondary events have on serial multi-tasking. Centrally presented cues 
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may provide a way in which to support and augment human attentional processing. As attention 
is crucial in the allocation of cognitive resources, the objective of this research is to assess the 
effect of centrally presented cues on the allocation of cognitive resources during serial multi-
tasking. 

An additional consideration in the development of adaptive displays pertains to the interfacing of 
neural signals with the computer system. There are many potential applications for such 
interfaces, and numerous aspects of neural activity that can be harnessed. This study will utilize 
EEG recordings. Prior research has demonstrated that using EEG measures in a rapid serial 
visual presentation paradigm, the occurrence of a threat stimulus could modulate perceptual 
event related potentials (ERP) components. Therefore, a secondary objective of the proposed 
research is to replicate these findings and to determine whether there is a difference in the 
isolation and reliable identification of brain signals associated with target detection between the 
two cuing conditions, and whether the two conditions affect the accuracy and reliability of target 
signature detection derived from EEG recordings.  

2.3.1.1.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL 
Protocol Number:  
Protocol Name: “Impact of Advanced Display Features on Operator Performance” 

2.3.1.1.2 Location 

This study was conducted at ARL HRED, Aberdeen Proving Ground, MD. 

2.3.1.1.3 Subjects 

A total of 17 subjects were recruited for this study, from among local researchers, engineers, 
military personnel, and other staff at ARL HRED. 

2.3.1.1.4 Apparatus 

This project required the use of 3 Shuttle PCs, deployed as a distributed system.  Each computer 
hosted custom software to manage the 3 main tasks within the simulation system:  

1. RSVP task (primary task, center display) 
2. Target Detection task (secondary task, left display) 
3. Formation Deviation task (secondary task, right display) 
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The computers were connected to each other via network through a hub. The computer hosting the 
primary task also had a parallel port connection to the EEG system, for sending event codes used 
as marker data, written to the EEG data stream. 

Subjects were instrumented with a BioSemi 64 (+8) EEG channel system with 4 eye and 2 mastoid 
channels recorded, with a sampling rate of 512 Hz.  

2.3.1.1.5 Demographics 

No demographic data is provided with this dataset. 

2.3.1.1.6 RSVP CT2WS Tasks 

There was one task (set of subject responsibilities) specified for this experiment, comprised of 3 
separate activities. Each component is described as follows: 

1. RSVP activity (primary task, center display) 
Subjects were instructed to make a manual button press with their dominant hand when 
they detected a target (person or vehicle) within a series of CT2WS video clips 
presented in an RSVP paradigm. Video clips consisted of five consecutive images, each 
100 ms in duration; each video clip was presented for 500 ms. There was no interval 
between videos such that the first frame was presented immediately after the last frame 
of the prior video. If a target appeared in the video clip, it was present on each 100-ms 
image. The distractor-to-target ratio was 90/10. RSVP sequences were presented in 2-
min blocks after which time observers were given a short break. A ‘blink’ message was 
displayed on the middle screen every 10 seconds. Sample images are shown in Figure 
2-17. 
 

2. Target Detection activity (secondary task, left display) 
This task uses images from the previous RSVP block, so it must only occur after the 
first RSVP block is complete. Upon receiving a cue to perform this task, the subject 
presses the “Start” button (center of screen), then receives a series of individual images 
from the set previously presented on the center screen. The number of images selected 
for evaluation is 20. The Distractor/Target ratio is 50/50. The subject performs a more 
thorough analysis of each image and reports “Target” or “No Target” for each one and 
presses “Submit”. Images are advanced to the next one upon each response. There’s no 
time limit to evaluate an image & respond. 
 

3. Formation Deviation activity (secondary task, right display) 
Upon receiving a cue to perform this task, the subject presses the “Start” button (center 
of screen), and then the formation misbehavior is displayed. The subject reports on 
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periodic events related to coordinated asset movement (i.e. a formation monitoring 
task), determining the nature of formation violations based on the color and shape of 
the indicator, and indicating a corrective action. The subject selects the button that 
represents the correction command for the vehicle: 

Red Triangle indicator = press “Veer Right” button 
Green Triangle indicator = press “Veer Left” button 
Green Circle indicator = press “Slow Down” button 
Red Circle indicator = press “Speed Up” button 

Triangles point in the direction of the misbehavior. 
The subject presses the “Submit” button to complete the task. 

 
The sequence of the task variants is as follows: 

RSVP CT2WS Baseline condition:  
Duration: ~5 minutes 
 
Task requirements: Subject performed the RSVP activity only. 
 

 

Figure 2-17. RSVP CT2WS Target Images & Display Timing 

 
RSVP CT2WS Multitasking Condition 2 Central Cueing:  
Duration: ~9 minutes 
 
Task requirements: Subject performed the primary task, and attended to secondary tasks as 
alerted through a color overlay on the center screen, as shown in Figure 2-18. A red overlay 
indicated a need to work on the Target Detection task, and the green overlay indicated a 
need to work on the Formation Deviation task. 
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Figure 2-18. RSVP CT2WS Central Cueing 

 
RSVP CT2WS Multitasking Condition 2 Peripheral Cueing:  
Duration: ~9 minutes 
 
Task requirements: Subject performed the primary task, and attend to secondary tasks as 
alerted through a color overlay on the side display corresponding with the activity that 
needed attention. A red overlay on the left display indicates a need to work on the Target 
Detection task, and the green overlay on the right display indicated a need to work on the 
Formation Deviation task. Examples of each task cue are shown in Figure 2-19. 
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Figure 2-19. RSVP CT2WS Peripheral Cueing 

 
Sessions: Each subject was scheduled to perform the 3 components of the RSVP CT2WS 
task on the same day, in a single recording session. The Baseline was performed first, 
followed by the 2 multi-tasking conditions with the condition sequence counter-balanced 
across subjects. 

2.3.1.1.7 POC 

Gabriella Larkin (gabriella.b.larkin.civ@army.mil), ARL, Primary Investigator, Analysis 
Anthony J. Ries (anthony.j.ries2.civ@army.mil), ARL, Associate Investigator, Analysis 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Engineer 

mailto:gabriella.b.larkin.civ@mail.mil
mailto:anthony.j.ries2.civ@mail.mil
mailto:tjohnson@dcscorp.com


ARL SANDR 
Dataset Summary v2.2.2 

76 

 

2.3.1.2 ARL ICB RSVP Insurgent-Civilian (ARL_ICB_RSVP) 

The RSVP Insurgent-Civilian experiment supports several analysis efforts in the areas of advanced 
algorithms and Brain-Computer Interaction (BCI). 

2.3.1.2.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL/TARDEC 
Protocol Number: ARL-20098-09021  
Protocol Name: “The Physiological Basis of Local Area Security and Semi-Autonomous 
Driving” 

2.3.1.2.2 Location 

This study was conducted at ARL HRED, Aberdeen Proving Ground, MD. 

2.3.1.2.3 Subjects 

A total of 18 subjects were recruited for this study, although there is only usable data for 16 
subjects. 

2.3.1.2.4 Apparatus 

A Dell Precision T7400 PC was used to host custom RSVP presentation and data collection 
software using E-Prime. Stimuli consisted of images that were 960x600 pixels, 96 dpi, and 
subtending 36.3 x 22.5. 

Subjects were instrumented with a BioSemi 64 (+8) EEG channel system with 4 eye (EOG) 
channels and 2 mastoid channels recorded. The scalp electrodes were arranged in a 10-10 montage. 
The sampling rate was 1024 Hz.  

2.3.1.2.5 Demographics 

Demographic information provided with this dataset includes subject ID, gender, age, dominant 
hand, vision (normal or corrected to normal), caffeine intake, and alcohol intake. 

2.3.1.2.6 RSVP Insurgent-Civilian Tasks 

There was one task specified for this experiment, performed by each subject under 5 different 
conditions. The task is described as follows: 
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RSVP Insurgent-Civilian:  
Duration: ~15 minutes 
 
Environment: Urban environment, representative of a middle-eastern city, included 
buildings, roads, traffic signs, and background features such as vehicles, foliage, etc. 
 
Stimuli: Images were presented for 500 ms (2 Hz) with no inter-stimulus interval. Images 
contained either a scene without any people (non-target) or a scene with a person holding 
a gun (target). Figure 2-20 and Figure 2-21 represent imagery used for this task containing 
sample RSVP stimuli and a detailed view of targets, respectively. 
 
 

 
Figure 2-20. RSVP Insurgent-Civilian Images 

A total number of 110 target images and 1346 non-target images were presented to each 
participant. Scenes in which a target appeared were also presented without the person in 
the non-target condition. All stimuli appeared within 6.5º of center of the monitor. 
 

 
Figure 2-21. RSVP Insurgent-Civilian Targets 

 
Task requirements: The goal of the task was to classify target images (humans with guns) 
from non-target images (humans without guns). 
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Condition B: Subjects performed a baseline version of the task involving 4 steps, 1-minute 
each: 

Step 1: Subjects listened to a series of tones presented every second for one minute 
with no action 

Step 2: Subjects blinked their eyes to the audio tones for one minute 
Step 3: Subjects fixated on a cross on the computer screen in silence for one minute 
Step 4: Subjects sat with their eyes closed for the one minute 

 
Condition 1: Subjects performed the task while receiving stimuli containing only targets, 
and with a requirement to only count the number of targets. 
 
Condition 2: Subjects performed the task while receiving stimuli containing only targets, 
and with a requirement to count the number of targets and respond to each with a button 
press. 
 
Condition 3: Subjects performed the task while receiving stimuli containing targets and 
non-targets, and with a requirement to only count the number of targets 
 
Condition 4: Subjects performed the task while receiving stimuli containing targets and 
non-targets, and with a requirement to count the number of targets and respond to each 
with a button press 
 
Sessions: Subjects participated in a single session, and performed the RSVP task under all 
5 conditions, with the condition sequence counter-balanced across subjects. 

2.3.1.2.7 POC 

Anthony J. Ries (anthony.j.ries2.civ@army.mil), ARL, Associate Investigator, Analysis 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Engineer 

2.3.2 ICB Publications 

Anthony Ries, Gabriella Larkin (2013) Stimulus and Response-Locked P3 Activity in a 
Dynamic Rapid Serial Visual Presentation (RSVP) Task. ARL-TR-6314. January, 2013. 
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA579452 
 
Amar R. Marathe, Anthony J. Ries, Vernon J. Lawhern, Brent J. Lance, Jonathan Touryan, Kaleb 
McDowell, and Hubert Cecotti, (2015) Effect of target and non-target similarity on neural 
classification performance: A boost from confidence. Frontiers in Neuroscience 9:270. 
DOI: 10.3389/fnins.2015.00270 

mailto:anthony.j.ries2.civ@mail.mil
mailto:tjohnson@dcscorp.com
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA579452
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http://journal.frontiersin.org/article/10.3389/fnins.2015.00270/full 
 
Hubert Cecotti, and Anthony J. Ries, (2015). Implication of non-stationarity in single-trial 
detection performance of event-related potentials. IEEE-EMBC 
http://uir.ulster.ac.uk/32324/1/paper02_ukci2015.pdf 
 
Hubert Cecotti, Amar R. Marathe, and Anthony J. Ries, (2015). Optimization of single-trial 
detection of event-related potentials through artificial trials, IEEE TBME-01566-2014 
DOI: 10.1109/TBME.2015.2417054 
http://ieeexplore.ieee.org/document/7067404/ 
 
Ben T. Files, Vernon J. Lawhern, Anthony J. Ries, and Amar R. Marathe, (2016). A permutation 
test of unbalanced paired comparisons of global field power. Brain Topography, 29, 345-357. 
DOI: 10.1007/s10548-016-0477-3 
https://link.springer.com/article/10.1007%2Fs10548-016-0477-3 
 
Hubert Cecotti, and Anthony J. Ries, (2016). Best practice for single-trial detection of event-
related potentials: application to brain-computer interfaces.  International Journal of 
Psychophysiology 111, January, 2017, 156-159 
DOI: 10.1016/j.ijpsycho.2016.07.500 
http://www.sciencedirect.com/science/article/pii/S016787601630633X 

2.3.3 ICB Datasets 

A total of 363 datasets were collected across 82 recording sessions, using 82 unique subjects, 
within the 4 specified experiments. 
 
The total size of the EEG files is 54.12 GB, representing 94.19 hours of EEG recording. 

2.3.3.1 ARL_ICB_CT2WS Dataset 

A total of 147 datasets were collected across 20 recording sessions, from 20 unique subjects 
recruited via the GVSL.  
 
The total size of the EEG files is 15.52 GB, representing 28.42 hours of EEG recording. 

2.3.3.2 ARL_ICB_RSVP Dataset 

A total of 91 datasets were collected across 14 recording sessions, from 14 unique subjects 
recruited via the GVSL. This total includes 88 complete datasets, and 3 abbreviated datasets. 
 
The total size of the EEG files is 10.38 GB, representing 18.68 hours of EEG recording. 

http://journal.frontiersin.org/article/10.3389/fnins.2015.00270/full
http://uir.ulster.ac.uk/32324/1/paper02_ukci2015.pdf
http://ieeexplore.ieee.org/document/7067404/
https://link.springer.com/article/10.1007%2Fs10548-016-0477-3
http://www.sciencedirect.com/science/article/pii/S016787601630633X
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2.4 Cognition and Neuroergonomics Collaborative Technology Alliance 
(CaN CTA) 

Difficulties experienced as US forces attempt to identify and neutralize the threats associated with 
the evolving security context have inspired the Army to reconsider, at a fundamental level, the 
capabilities and readiness of its personnel and materiel resources.  Imperatives to prepare and 
transform the Army to meet the demands of the modern strategic environment have indeed placed 
science and technology in a prominent position. 

Enabling technology advances are enhancing Soldier-system performance and expanding 
operational capabilities, however, these advances can also intensify the need to assess the Soldier’s 
ability to perform his or her tasks under complex, dynamic, and time-pressured operational 
conditions. Technological advances, particularly in sensor deployment, information bandwidth, 
and automation, coupled with economic and political realities, will continue to place more and 
more responsibility on fast, distributed, and effectively independent decisions by solo or small 
groups of soldiers who control ever more potent defensive and offensive assets. Under such 
circumstances, Soldier cognitive failures in comprehension and decision-making based on an ever 
more complex data stream may become a critical bottleneck in Army defensive and offensive 
capabilities. Indeed, both failures to act and imprudent reactions can have high costs in terms of 
mission success, human suffering, and sociopolitical perception. 

It thus becomes increasingly important that Army systems integrate knowledge of, as well as 
actively enhance, operator cognitive state and reactions to events. Towards this end, neuroscience-
based approaches have the potential to provide revolutionary advances to foster practical solutions 
to address Army needs. Recent progress in the neurosciences has greatly advanced our knowledge 
of how brain function underlies behavior, providing our modern scientific foundations for 
understanding how we sense, perceive, and interact with the external world; an understanding that, 
if properly leveraged, can lead to improved capacity for integrating human neurocognitive function 
with Army system design and performance. 

2.4.1 CaN CTA Program Summary 

The Cognition and Neuroergonomics Collaborative Technology Alliance (the CaN CTA) program 
was formed by the U.S. Army Research Laboratory (ARL) as a consortium of government, 
industry and academic research partners to address these challenges. Here, the term 
“neuroergonomics” is used as originally proposed and defined by Parasuraman (2002) as “the 
study of the brain and body at work,” and specified for military applications as “operational 
neuroergonomics” within the CaN CTA as building upon neuroscience, human factors, 
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psychology, and engineering to enhance our understanding of Soldier brain function and behavior 
in complex operational settings, assessed outside the confines of standard research laboratories. 

2.4.1.1 ARL EEG Comparison Study 

Advances in neurotechnology have made it possible for researchers to investigate brain function 
beyond the laboratory using mobile electroencephalography (EEG) systems. Mobile EEG systems 
offer researchers experimental flexibility and a cheaper alternative to laboratory-based systems; 
however, it is unclear if their signal quality is comparable. Here we compared signals acquired 
from two wireless systems, Advanced Brain Monitoring (ABM) X10 and Emotiv EPOC, to signals 
measured from a conventional, wired BioSemi EEG system using both human participants and a 
surrogate phantom head. Participants performed a visual oddball task while wearing each of the 
three systems on different days. 

2.4.1.1.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL 
Protocol Number: ARL-20098-10027 
Protocol Name: “Comparison of operationally-relevant EEG systems” 
Contract: W911NF-10-2-0022 

2.4.1.1.2 Location 

This study was conducted at the ARL indoor, climate-controlled Mission Impact through 
Neuroergonomic Design (MIND) laboratory. 

2.4.1.1.3 Subjects 

A total of 18 subjects participated in this study, with each subject participating in data collection 
on 3 separate days, wearing a different EEG system headset each day while performing a series of 
standard tasks.  

2.4.1.1.4 Apparatus 

The following equipment was allocated for data collection in this study:  

Standard PC: A standard computer may be used to present auditory and visual stimuli to 
participant, where the timing and spatial location of the stimuli are controlled by 
experimental presentation software, such as MATLAB or E-Prime. Participant responses 
may be collected using a keyboard, keypad, mouse, joystick, or microphone (verbal 
responses). 
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Simulator: The simulator is a fixed-base driver’s station with three flat screen computer 
monitors (set at 120° from display face to display face) and a driver control system that 
consists of a steering wheel, foot brake, and accelerator. The driving configuration will 
represent the indirect driving vision system on the CAT-ATD. The computer-generated 
road-scene graphics are created using MINI-SIM by Real-Time technologies, Inc. The 
participant may be tasked to drive a simulated vehicle through a computer generated test 
course that requires several maneuvers, including lane changes, sharp turns, and decreasing 
radius turns. 

Eye -tracking and Monitoring System: faceLAB4™ (Seeing Machines, Canberra, 
Australia) is a camera-based tracking system that allows completely non-contact operation, 
allowing for observation of the natural participant eye and head movement behavior at 
adequate spatial resolution (~0.5º). Eye and head movements, along with measurement 
reliability data, may be logged in real time and synchronized with the other data measures. 
No video record is captured by this data collection system. 

 

Figure 2-22. EEG Headsets and a Phantom Head 

ABM EEG System: A 9-channel EEG headset (ABM, Inc., Carlsbad, CA) that transmits 
signals over a wireless or RS-232 wired interface. EEG recording sites conform to the 
international 10-20 electrode placement system. A water-soluble salinated (salty) electrode 
gel will be used to facilitate conductivity between the scalp and electrode surfaces and 
performed with strict adherence to the safety guidelines established by the Society for 
Psychophysiological Research (Putnam, Johnson, & Roth, 1992). The weight of this 
system is about twelve ounces. The ABM is shown in Figure 2-22. 

BioSemi EEG System: An EEG system using an ActiveTwo amplifier and electrode cap 
(resembling a swim cap) with pre-amplified surface electrodes (BioSemi, Amsterdam, 
Netherlands), sampling at a rate of 500 Hz. EEG recording sites will be prepared in accord 
with the standardized international 10-20 electrode placement system (Nuwer et al., 1994) 
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and performed with strict adherence to the safety guidelines established by the Society for 
Psychophysiological Research (Putnam, Johnson, & Roth, 1992). A water-soluble 
salinated (salty) electrode gel will be inserted into each of the electrode casings to facilitate 
conductivity between the scalp and electrode surfaces. Vertical (VEOG) and horizontal 
(HEOG) eye movements will be monitored using bipolar electrode montages attached 
superior and inferior to the right eye (VEOG) and both orbital fossa (HEOG). The 
collective weight of these electrodes is three ounces. The BioSemi is shown in Figure 2-22. 

Emotiv EPOC System. A lightweight, commercially available (Emotiv, Australia) EEG 
headset developed for advancing BCI applications. The system consists of 16 felt pad-
based electrodes within a flexible plastic frame, which comfortably fits most head sizes, 
and transits wirelessly to a USB-based PC receiver (no tethering necessary). Contact with 
scalp skin through normal hair is maintained via standard saline solution; no medical 
electrode gel is necessary, providing ease and comfort for users and minimal preparation. 
The weight of the system (dry) is 10 ounces. The Emotiv is shown in Figure 2-22. 

NCTU Dry Electrode System: A small, lightweight headpiece (NCTU, Taiwan) that relays 
EEG data over a standard wireless data transmission protocol to a recording PC device. 
The system consists of NCTU’s miniaturized MINDO dry-electrode sensors that work 
through normal hair and require no prior skin preparation, nor the use of conductive gels 
to facilitate electrical contact with the scalp. The headpiece positions the sensors at a 
sampling of the positions of the standardized international 10-20 electrode placement 
system. The weight of this system is twenty-five ounces. 

QUASAR EEG System: A lightweight, user-adjustable headpiece (QUASAR, Inc., San 
Diego, CA) that relays EEG data to an external Base Station wirelessly or via a RS-232 
wired interface. The system consists of QUASAR’s hybrid, high impedance, dry-electrode 
sensors that work through normal hair and require no prior skin preparation, nor the use of 
conductive gels to facilitate electrical contact with the scalp. The sensors can be 
individually adjusted to improve their contact with the scalp. The headpiece positions the 
sensors at the nominal F3, Fz, F4, C3, Cz, C4, P3 and Pz positions of the standardized 
international 10-20 electrode placement system. An additional reference sensor is placed 
at the nominal P4 position. The weight of this system is ten ounces. 

2.4.1.1.5 Demographics 

No demographic data is provided with this dataset. 



ARL SANDR 
Dataset Summary v2.2.2 

84 

 

2.4.1.1.6 EEG Comparison Study Tasks 

A number of tasks were defined for subjects to perform while instrumented with each of the EEG 
systems. 

Note: The only data in the repository for this study is the combination of the VEP/Oddball task 
performed while subjects were instrumented with the BioSemi EEG system. 

2.4.1.1.6.1 Visually-Evoked Potential/Visual Oddball (VEP/Oddball) 

(Approx. 4 minutes) 

Participants will sit comfortably in front of a computer monitor. To begin, participants will fixate 
on a black fixation cross, centered on the screen. On each trial, a visual stimulus will appear in the 
center of the screen for 150 milliseconds followed by 1000-1200 milliseconds inter-stimulus 
interval containing only the fixation cross. On 12% of the trials, the stimulus will be a picture of 
an insurgent, and on the other 88%, the stimulus will be a picture of a US Soldier. Participants will 
be instructed to press a response key after each stimulus. One response key will be designated for 
the insurgent and a different response key for the US Soldier. The stimulus-response mapping will 
be counterbalanced across participants. This procedure modifies previous oddball research (Polich 
& Kok, 1995; Kerick et al, 2009) with operationally relevant images. 

2.4.1.1.6.2 Resting State 

(Approx. 16 minutes) 

Participants will sit comfortably in a chair. There will be twelve 1-minute resting baselines, 
rotating through three conditions: resting with eyes closed in a well-lit room (total of 4), resting 
with eyes open in a well-lit room (4), and resting with eyes open in a dark room (4), with 45 
seconds in between each 1-minute session to allow the participant to change states. Participants 
will be instructed to try to be as restful as possible. An auditory cue on the computer will signal 
when the participant is to switch states. This procedure modifies previous research (Tomarken et 
al, 1992). 

2.4.1.1.6.3 Error-Related Potential 

(Approx. 16 minutes) 

Participants will sit comfortably in front of a computer monitor. To begin, participants will fixate 
on a black fixation cross-centered on the screen. On each trial, a visual stimulus will appear in the 
center of the screen and remain until the participant responds. Each trial requires the participant to 
press a button to move non-green box to overlap the green box, and the box moves 1 second later. 
On ~20% of trials, the box moves in the opposite direction of the button press. 
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2.4.1.1.6.4 N-back 

(Approx. 11 minutes) 

Participants will sit comfortably in front of a computer monitor. To begin, participants will fixate 
on a black fixation cross-centered on the screen. On each trial, a single letter of the alphabet will 
appear in the center of the screen for 300 msec followed by an inter-stimulus interval containing 
only the fixation cross. For a block of 30 trials, the participant will respond if the current letter 
matches the letter seen on the last trial (1-back). For the next block of 30 trials, the participant will 
respond if the current letter matches the letter on the screen two trials ago (2-back). The blocks 
will continue to alternative between 1-back and 2-back, with the order of the blocks 
counterbalanced between participants. 

2.4.1.1.6.5 Artifact Susceptibility 

(Approx. 15 minutes) 

Participants will initially sit comfortably in a chair. There will be 7 seated movement conditions, 
lasting approximately 1 minute each with 20 seconds in between tasks: vertical jaw movement, 
eyes blinks, lateral eye movements, vertical eye movements, raising the eyebrows, head rotations 
side to side, shoulder shrugs, torso rotations from the hips from side to side. The participant will 
be cued what direction to move and when to move by an auditory stimulus. Following the seated 
conditions and a 1-minute break, the participant will stand up and sit down thirty times and then 
remain standing to march in place for 1 minute. They will also walk at a relaxed pace for 5 minutes. 
Finally, the participant will sit comfortably in a chair with their eye closed while the experimenter 
tests two sources of electrical noise: turning on and off the lights and turning on and off a two-way 
radio. This procedure extends prior research (Estepp et al, 2009; Kerick et al, 2009). 

2.4.1.1.7 POC 

Dave Hairston (william.d.hairston4.civ@army.mil), ARL, Research Collaborator 
Jean Vettel (jean.m.vettel.civ@army.mil ), ARL, Research Collaborator 

2.4.1.2 DCS Finger Tapping Experiment (DCS_FT) 

When recorded at the scalp using standard electroencephalography (EEG) techniques many 
neural signals exhibit poor signal-to-noise ratios (SNR). This often makes robust analysis 
difficult, if not impossible. The purpose of this study is to acquire a data set that enables the 
investigation, development, and validation of novel methodologies for better detection and 
analysis of scalp-based neural signals. The signals of interest for this study are the phase-locked 
responses (also known as motor potentials) and power spectral changes related to deliberate self-
paced finger movements. We chose these signals because there has been a considerable amount 
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of prior research into the cortical dynamics of finger movements. Also we feel that no one has 
yet reliably shown the capacity for differentiating brain activity associated with individual finger 
movement using scalp level electrical data. We feel that by working towards this goal we will 
greatly enhance our current understanding of the type of data EEG provides as well as 
demonstrate the utility of EEG for detecting previously disregarded, subtle cortical changes. 

2.4.1.2.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL/DCS 
Protocol Number: ARL-113-069 
Protocol Name: “Investigating Cortical Components of Deliberate Finger 
Movements using High Density (256 Channel) Electroencephalography” 
Contract: W911NF-10-2-0022 
 

2.4.1.2.2 Location 

This study was conducted at ARL’s MIND lab at Aberdeen Proving Ground, MD. 

2.4.1.2.3 Subjects 

A total of 13 subjects were recruited for this study, with each subject participating in a single 
session and performing the task one time, producing 13 data recordings. 

2.4.1.2.4 Apparatus 

This project required the use of two standard PCs. One PC was used for EEG data collection and 
one was used for stimulus presentation. Stimuli were presented with custom software, developed 
using the E-Prime software package produced by Psychology Software Tools, Inc., indicating 
which finger should be used for each task. One additional monitor and response pad were provided 
for subject input. The response pad contained five buttons, four of which were used in this task. 

Subjects were instrumented with a BioSemi 256 (+8) EEG channel system with 4 eye and 2 
mastoid channels recorded, with a sampling rate of 1024 Hz. 

2.4.1.2.5 Demographics 

No demographic data is provided with this dataset. 
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2.4.1.2.6 Finger Tapping Tasks 

There was one task specified for this experiment, which is described as follows: 

FT:  
Duration: ~80 minutes 
 
Task requirements: Subjects were prompted to tap a button on a response pad repeatedly 
with each of 4 different fingers. The sequence was as follows: 
 Repeat the following “block” of subtasks 8 times: 
 <begin block> 

Left hand, middle finger (2 minutes) 
 <end block> 

<begin block> 
  Left hand, index finger (2 minutes) 
 <end block> 

<begin block> 
  Right hand, index finger (2 minutes) 
 <end block> 

<begin block> 
  Right hand, middle finger (2 minutes) 
 <end block> 
  Break (self-paced) 
 
 Perform the following block of subtasks 1 time: 
 <begin block> 
  Randomly tap fingers of subjects choosing (4 minutes) 
  Note: maintain the pace of the previous tasks 
 <end block> 
 
Each finger was to be tapped at a consistent pace, while trying to maintain a 4-5 second 
separation. Subjects were encouraged, though not required, to avoid mental counting in 
favor of simply developing and adhering to an internal rhythm. This was to minimize 
contamination from any secondary cognitive tasks. 
 
Sessions: Each subject was scheduled to perform the Finger Tapping task 1 time.  
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2.4.1.2.7 POC 

Sandhya Rawal, Primary Investigator 
Kaleb McDowell (kaleb.g.mcdowell.civ@army.mil), Associate Investigator 
Stephen Gordon (sgordon@dcscorp.com), Associate Investigator 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Engineer 
 

2.4.1.3 DCS CANCTA Operator Dynamics of Event Appraisal Experiment 
(DCS_CANCTA_ODE) 

In response to current and projected needs associated with the optimization of Warfighter 
interactions with typically information-dense and highly dynamic, complex computerized 
interfaces, the CaN CTA has proposed to explore how research in cognitive neuroscience could 
best be used to design individualized real-time neuroergonomic systems aimed at improving 
situational awareness and decision-making under stress. To this end, an integrative research 
program has been described that would extend the range and depth of known principles of and 
established methods for estimation of neurocognitive state, event appraisal, and behavioral 
intentions of Army operators of such systems.  

To date, efforts within the CaN CTA have been advancing objectives largely associated with 
methods for neurocognitive state estimation and inferences of behavioral intent. Although 
considerable progress has been made in these directions, methods for assessing operator appraisal 
of the operational context, as well as the efficacy of actions within it, are only beginning to be 
examined within the CTA. Indeed, the availability of methods and tools for extracting 
comprehensive information regarding how the operator is reacting to, planning actions in, and 
appraising effects of those actions on the unfolding task environment will be an essential 
component of advanced computational characterizations of individual differences in 
neurocognitive performance. Moreover, such tools will broaden our insight regarding when and 
how to most appropriately intervene in the ongoing performance of an operational task.  

To meet the objectives just discussed, significant continuing efforts within the CAN CTA involve 
the application of computational and machine-based operator state classification and 108 
prediction algorithms to data derived from increasingly advanced sensor systems. To date, 
however, the information driving development of these algorithms has largely, though not 
exclusively, been derived from electroencephalographic (EEG) data. Certainly, the intensive focus 
on the information contained in complex EEG signals is critical to addressing the scientific barriers 
outlined earlier in this document (section 2.2). Yet, it is equally crucial to recognize and address 
the fact that, in the absence of information from other sources that naturally co-vary with EEG – 
such as autonomic function and overt motor behavior – an understanding of the true nature of the 
relations between neural dynamics, operator state, and operational behavior will remain elusive.  
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Indeed, given the spatial limitations and constrained set of behavioral options for in-vehicle 
(mounted) operations, as well as the requisite computational overhead, there is a question as to the 
practical value of recording a dense array of kinematic variables describing overt behavior. Yet, 
as has been argued earlier in this document (see section 2.2, B3), information regarding the whole 
of the objective behaviors enacted by the Soldiers in the operational context is essential for 
constructing an understanding of the neural patterns observed in EEG and thus for drawing 
inferences regarding the perceptual-cognitive processes being engaged during military tasks.  

We believe that even within such a constrained setting as a crewstation there is information that 
can be leveraged beyond EEG signals to improve the classification process and that such 
information may be useful to help identify states with unique, yet consistent, brain dynamics. For 
example, through the use of computer-vision technologies that register graph topologies with 
individual facial features (see Figure ODE 1) as well as intelligently selected and placed sensors 
we intend to capture and record continuous streams of data related to individual motor (facial, 
ocular, upper limb) behavior, coupled with EEG and other surface physiological data (heart rate, 
EMG), while participants perform militarily-relevant tasks. This also moves towards more 
completely implementing the consortium’s notion of “Mobile Brain/Body Imaging” (MoBI) 
(Makeig et al, 2009). Though, while current MoBI concepts are intended to capture gross body 
movements in less-constrained environments we will focus on the types of behavior most 
applicable to and readily retrievable in the highly-constrained crewstation environments that are 
typical of armor-laden military vehicles. 

The overarching goal of this research is to develop and validate methods for enabling and making 
inferences about operator event appraisal processes as reflected in changes observed in cognitive 
and emotional state variables during the execution of tasks in operational environments. The aims 
underlying this goal include:  

Aim #1 is to develop and experimentally validate an integrated system capable of recording and 
synchronizing high-density, multimodal data on human physiology and behavior. To enable 
system validation, we will record and explore the patterns of correlation and co-variance among a 
variety of psycho-physiological and behavioral response variables. Measures will be derived from 
EEG, EOG, EMG, ECG, limb, head, and gaze position tracking, facial expressions, verbalizations, 
salivary samples for determination of concentrations of cortisol and testosterone, and the 
participant responses to the tasks using the mouse, keyboard, and/or response pad. Subjective state 
and changes thereof will be probed by means of standard questionnaires, such as the Positive and 
Negative Affect Scale (PANAS) and the Self-Assessment Manikin (SAM), to validate state 
changes detected in the behavioral and physiological data.  

Initially, the primary efforts undertaken to support this aim focus on the integration of the 
previously-discussed multimodal data using physiological recording systems already available at 
DCS and through collaborators at the Translational Neuroscience Branch at ARL. Along with 
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EEG, the additional data modalities will be recorded and, of course, engineers will subsequently 
test and verify the sensor system capabilities regarding the sampling, synchronization, and logging 
of the multimodal data. Later efforts will use virtual environment simulation created with SCCN’s 
SNAP tools and a crewstation interface that will be a designed to emulate key aspects of 
TARDEC’s current Warfighter Machine Interface (WMI). In this latter effort, we intend to 
replicate, in improved form, simulation environments and experimental systems and protocols 
already developed to allow participants to drive (without concomitant motion simulation) around 
a virtual urban environment emulating a typical military setting (e.g. a generic village located in 
the Middle East) while tasked with standard target detection and communications tasks.  

Aim #2 is to develop computational strategies that will facilitate sensor management in order to 
enhance the acquisition and processing of multimodal data for studies of human neurocognitive 
performance in operational environments. Our approach will involve applying an intentionally-
selected set of algorithms to human physiologic and behavioral data which, when performing 
reliably, will enhance the online acquisition of complex data sets as well as their later offline 
processing. We will also apply several machine learning algorithms to characterize individual data 
streams with respect to various data quality measures in order to establish their reliability and 
robustness.  

In support of this aim, we will apply a variety of machine learning algorithms to the integrated and 
synchronized data set that will be defined around the use of features extracted from the additional 
modalities of data with the goal to create a set of filters that will serve to automate the artifact 
rejection process. We will then focus on those modalities that are expected to have strong 
correlation, e.g. 1) video-based eye tracking and EOG, 2) facial expressions, facial EMG, and 
frontal/temporal EEG, 3) head movements and upper shoulder/neck EMG, and 4) upper 
shoulder/neck EMG and crewstation interactions, to name a few. Using standard techniques, we 
intend to develop specific data transformations to maximize correlation across modalities. The 
transformed data will then be fed into machine learning algorithms that either look for specific 
fault conditions, or use Bayesian inferencing to determine the most likely state (i.e. “fault” or “not 
fault”).  

Finally, when applicable, and possible, we will attempt to supplement faulty data with data derived 
from a secondary source. For this to be maximally successful, it will require an understanding of 
the intended use of the faulty data, as well as the sensitivity of the user to changes in that data. At 
present, we intend simply to provide supplemental data along with an indicator signal that the data 
source has changed. Finally, while we recognize that sensor management is typically viewed as an 
online tool, we plan to develop our approaches first using post-processed data and then port these, 
as time and resources allow, to online conditions.  

One future direction for this work would be to perform a sensitivity analysis of processing methods 
that use such data, e.g. machine-learning classifiers and state estimators, in order to determine 
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which features are most critical for robust performance, how does performance degrade with 
feature degradation, and how does performance differ if a secondary data source is used?  

The third aim of this effort is to use EEG and additional modalities of data to enable the 
classification of operator appraisal processes while they perform both simple and complex 
cognitive-motor tasks.  

For this aim, we consider appraisal processes to be reflected in two ways. The first builds from the 
theoretical work of Scherer (c.f. Scherer, Schorr, & Johnstone, 2001), in which we will consider 
appraisal to be a fundamental component of affective processing. As such, we expect appraisal 
processes to be reflected in assessments of affective state (i.e. frustration, contentment). The 
second type of appraisal is assumed to be related to processing of the performance of the task at 
hand. That is, as a task unfolds, we expect the operator’s assessment of their own performance to 
be reflected in instantaneous reactions following the selection and execution of an action. For 
example, in a difficult threat detection task, pilot testing has suggested that we might see changes 
in facial expressions when an operator immediately detects that he or she has wrongly identified 
the type of target that they just viewed. Thus we may see stereotyped responses in situations 
provoking errors (e.g. a grimace indicating dissatisfaction) versus correct responses (i.e. a smile 
or a nod indicating satisfaction), which will likely be classifiable based on differential patterns of 
EMG, facial expression, and, perhaps, autonomic variables such as heart rate. 

2.4.1.3.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL/DCS 
Protocol Number: ARL 13-043 
Protocol Name: Operator Dynamics of Event Appraisal I 
Contract: W911NF-10-2-0022 



ARL SANDR 
Dataset Summary v2.2.2 

92 

 

2.4.1.3.2 Location 

This study was conducted at ARL’s MIND lab at Aberdeen Proving Ground, MD. 

2.4.1.3.3 Subjects 

A total of 17 subjects were recruited for this study, with each subject participating in a single 
session and performing the task 4 times, producing 67 usable data recordings (and one that was 
not usable). 

2.4.1.3.4 Apparatus 

This project required the use of four computing platforms (tower systems or laptops) operating in 
a distributed architecture, as illustrated in Figure 2-23. The purpose for each system is as follows: 

1. Experimental Control system 
a. Simulation and data recording control interface 
b. Provides stimuli to subject monitor and to speakers 
c. Provides common event code / triggers for all data streams 

2. Data logging system 1 
a. Operator inputs (keyboard, mouse) 
b. Webcam audio feed 

3. Data logging system 2 
a. BioSemi data logging (EEG, EOG, ECG, EMG, EDA) 
b. Trigno system logging (accelerometer) 

4. FaceLAB system 
a. Eye-tracking system processing and data logging 
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Figure 2-23. ODE System Architecture 

Subjects were instrumented with a BioSemi 64 (+8) EEG channel system with a sampling rate of 
1024 Hz. External channels connected to the BioSemi DAQ unit were used as follows: 

EX1: Left mastoid 
EX2: Right mastoid 
EX3: Right eye horizontal EOG 
EX4: Right eye vertical EOG 
EX5: Forehead EMG (align w/Fz) 
EX6: Left jaw EMG (lower, centered about masseter) 
EX7: Left jaw EMG (upper, centered about masseter) 
EX8: Chest ECG 

 
Subject also wore a Trigno system, for the purposes of capturing Accelerometry data via sensors 
at the following locations: 
  

1: Right neck 
 2: Left neck, center of sternocleidomastoid 
 3: Left trapezius 
 4: Right trapezius 
 5: Right wrist 
 6: Left wrist 
 7: top center of EEG cap 
 8: Used to receive event trigger codes from experimental control system 
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Additionally, a FaceLAB eye-tracking system was used with cameras positioned about the subject 
monitor at the test station, and a webcam was used to record audio during the session. 

2.4.1.3.5 Demographics 

No demographic data is provided with this dataset. 

2.4.1.3.6 ODE Tasks 

There was one task specified for this experiment, performed in 4 parts, which are described as 
follows: 

ODE:  
Duration: ~80 minutes 
 
Run 1: PRACTB – Calibration Run 

Subjects performed a variety of artifact inducing and baseline calibration tasks (see 
Figure 2-24) including: 

2 minutes of fixating on a cross hair 
2 minutes of visually tracking a ball as it bounced around the screen 
Speaking 20 short phrases out loud 
Making a happy, sad, or neutral face (6x each) 
20x eye blink 
20x jaw clench 
20x eye brow raise 
35x saccadic eye movements to a random point (points were distributed as 
they are for the 5 on a dice) 
2 minutes of watching a video of the ODE scene with no targets 
20x reaction time measures (push a button as soon as you seen a stimulus). 
20x right hand, 20x left hand. 
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Figure 2-24. ODE PRACTB Task 

 
Game Run 1:  

Subjects were instructed to watch for the appearance of visual targets 
(approximately 1 every 3 secs) and to discriminate and report the type of target (left 
or right hand button press) as quickly and accurately as possible. The process is 
shown in Figure 2-25. Targets consisted of humans with weapons, humans without 
weapons, tables with a tablecloth (or sheet) covering what’s underneath, and tables 
without a cloth. Points were given to the subject (visual feedback after every target) 
based on speed and accuracy. Subjects were driven through a city during this task. 
At different times in the video, a dense fog was overlaid on the scene.  

After the end of 15 minutes, subjects watched the same 2-minute video as shown 
in the PRACTB 

Game Run 2:  

Same as game run 1, but in a different part of the city.  

After the end of 15 minutes, subjects watched the same 2-minute video as shown 
in the PRACTB 
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PRACTB2 – Post-run calibration 

Subjects performed a reduced version of the same artifact inducing tasks and 
calibration tasks as in the PRACTB.  

2 minutes of visually tracking a ball as it bounced around the screen 
Making a happy, sad, or neutral face (6x each) 
10x eye blink 
10x jaw clench 
10x eye brow raise 
35x saccadic eye movements to a random point (points were distributed as 
they are for the 5 on a dice) 

 
Figure 2-25. ODE Target Detection and Classification Task 

 
Sessions: Each subject was scheduled to perform the 4 parts of the ODE task 1 time.  
 

2.4.1.3.7 POC 

Kelvin Oie, (kelvin.s.oie.civ@army.mil), Primary Investigator 
Jason Metcalfe (jason.s.metcalfe2.civ@army.mil), Associate Investigator 
Antony Passaro (antony.d.passaro.civ@army.mil), Associate Investigator  
Keith Whitaker (keith.w.whitaker1.civ@army.mil), Associate Investigator 
Stephen Gordon (sgordon@dcscorp.com), Associate Investigator 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Engineer 
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2.4.1.4 NCTU Real-World Neuroimaging Vehicles Driving Environments Experiment 
(NCTU_CANCTA_RWN_VDE) 

Soldiers performing sustained military operations often function for extended periods in stressful 
environments with fractionated or no sleep. It is well-established that fatigue, whether due to 
acute or chronic sleep deprivation, extended time-on-task or the interaction between sleep- and 
task-related factors, is associated with neurocognitive performance decrements across a broad 
range of perceptual, cognitive and motor functions (Killgore, 2010; Lim & Dinges, 2010). Motor 
vehicle crashes account for nearly one-third of U.S. military fatalities annually and are the 
leading cause of US military fatalities (Krahl et al., 2010). Further, one of the leading causes of 
vehicle accidents is driver fatigue (NHTSA, 2011). Fatigue, as well as stress, has been shown to 
dysregulate executive attentional control mechanisms underlying performance (Bishop, 2008; 
van der Linden et al., 2003).  

Although much research has been devoted to understanding relations between brain activity and 
fatigue states of drivers, the vast majority of this research has been conducted in driving 
simulators (SIM) under highly controlled laboratory conditions so it’s not known how well 
findings generalize to complex real-world (RW) driving. One issue with investigating fatigue in 
the laboratory is the artificial manipulation of sleep deprivation. Most researchers have employed 
full or partial sleep deprivation paradigms. In full sleep deprivation paradigms, subjects are 
denied sleep continuously over a 24-hr period or longer, whereas in partial sleep deprivation 
paradigms subjects are restricted to just a few hours of sleep (e.g., 2-6 hours) over a period of 3-4 
days. In the real world, full sleep deprivation is a much less common than partial sleep 
deprivation (Durmer et al., 2005). However, even partial sleep deprivation paradigms require 
control over the sleep-restricted periods in a regimented manner, which do not accurately reflect 
sleep patterns of individuals in the real world. Therefore, we propose an alternative paradigm for 
investigating the effects of real-world fatigue on performance in both SIM and RW driving 
experiments. Specifically, we will leverage a Daily Sampling System (DSS) developed in 
Program Year 4 to monitor and track subjects’ daily variations in sleep patterns and perceived 
levels of stress and fatigue as experienced by subjects naturalistically on an everyday basis. The 
DSS will automatically evaluate each subject’s daily levels of fatigue based on actigraphy, sleep 
diaries, and subjective reports and schedule subjects for experiments along a continuum of levels 
of fatigue. For the purposes of this research, note that while sleepiness may be considered an 
important component of fatigue, the terms are not synonymous.  

Another issue with investigating fatigue in the laboratory is the artificial driving environment 
inherent in driving simulators. Realistic driving conditions are difficult to simulate because there 
is no element of danger or real consequences for degraded driving performance in SIM driving, 
as is evident in RW driving. In order to overcome this issue, we have planned a series of SIM 
experiments designed to simulate increasingly more complex, realistic driving environments in a 
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ride motion simulator, but under experimental control, while also planning an observational 
study in which we will examine data from subjects driving in the real world.  

By addressing these two issues, we will be able to better understand how the brain functions 
during real driving under the demands of real fatigue. EEG, eye tracking, driving performance, 
and subjective report data will be recorded, integrated, and analyzed from a large number of 
subjects in both SIM and RW driving environments over repeated sessions across different 
driving conditions. Experiments comprising this 3-yr effort will generate extensively large and 
complex data that will also be leveraged to generate a unique and unprecedented database in 
terms of the number and diversity of experiments, subjects, measures and meta-data (i.e., “Big 
Data”). The database will facilitate hypothesis-driven research focusing on brain-behavior 
relations in real-world environments as well as data mining and exploratory research. The 
present research plan proposes analysis of within- and between-subjects differences, analysis of 
SIM versus RW differences, comparisons of approaches in signal processing, statistics and 
multifactorial analyses, data integration/fusion, feature extraction, data reduction, collaborative 
filtering and clustering, and modeling and prediction algorithms.  

 
The objective goal for understanding real-world fatigue within vehicle driving environments is:  

Objective Goal: Image and interpret real-world fatigue during real driving with a quality 
that enhances the fundamental understanding of the underlying brain processes.  
The challenges encountered in this three-year study will be many-fold, as will the scientific, 
engineering, and analytical efforts aimed at meeting those challenges. In attempting to 
understand brain activity during real driving, it will be essential to extend driver fatigue 
monitoring from small-scale laboratory experiments to practical real-world applications. 
Driving provides a constrained trajectory that allows identification among activities in a 
simulator and those in the real world. However, the complexity of the decision space and 
the diversity of responses within and between subjects require a substantial data-collection 
and analysis effort to validate any proposed monitoring tools. Therefore, an experimental 
framework that leverages both the experimental control offered in the simulation 
environment (e.g., where the subjects’ driving performance can be measured against their 
response to experimentally induced vehicle perturbations), and the real-world aspect of 
driving in everyday environments, is expected to produce a useful aggregation of data that 
can be analyzed using a common approach. However, in the event potential difficulties are 
realized in collecting the real world driving data (e.g., owing to IRB concerns), a minimally 
sufficient goal for the project has also been established: 
  
Threshold Goal: Image and interpret real-world fatigue during simulated driving within 
realistic virtual environments.  
For each version of the research goal, the key concept is real-world fatigue as it pertains 
to a driving task. Use of the DSS to ensure subjects are in the intended target state during 
experimentation is envisioned as an effective and innovative technique for qualifying the 
data collection efforts within this project. It is expected to support the study of 
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generalizable driving fatigue models by exploring the brain dynamics associated with 
different fatigue levels. Such models will rely on foundational EEG analysis to assess the 
applicability and reliability of different neuro-markers in signaling fatigue, as well as a 
multi-aspect analysis approach for leveraging additional sources of physiological 
instrumentation data, and subject behavioral data.  

 
The overall research plan for understanding real-world fatigue within vehicle driving 
environments entails a series of longitudinal studies that employ a typical three-phased approach 
involving experimentation to collect driving data, followed by data management processing to 
correlate physiological measurements with environmental events via a standard methodology, 
and data analysis to interpret a driver’s cognitive state based on context. Separately, the studies 
will yield multi-aspect data sets that feature physiological measurements of subjects performing 
a driving task in either a simulated or real-world environment. In the aggregate, the studies will 
produce a substantial amount of driving data that spans environmental conditions and subject 
states of fatigue and stress. Thus, this three-year project will require careful characterization of 
the data and metadata so that comparisons can be accurately and effectively made under a variety 
of simulated and real-world conditions. Additionally, the data must be prepared for analysis 
using tools and techniques that are suitable for working with expansive data sets. 

Note: The design of the real-world driving study referenced above was modified in PY7-8. 
Instead of studying driver fatigue, the researchers added a participant, and attempted to track 
driver-passenger communication as a function of emotional valence (manipulated by use of 
humor), and determine whether or how these factors influence the development of passenger 
trust in the driver. The study is titled “Assessment of Intra- and Interpersonal Brain and 
Behavioral Dynamics of Driver-Passenger Dyads during Real-World Driving”, and assigned the 
project identifier RWN-VDEDP (Real-World Neuroimaging in Vehicle Driving Environments 
with Driver and Passenger). This study is complete at the time of this writing, and data will be 
added to SANDR after curation. 

2.4.1.4.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL/NCTU 
Protocol Number: ARL 14-088 
Protocol Name: “Simulated Driving under Conditions of Real-World Fatigue and Stress” 
Contract: W911NF-10-2-0022 
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2.4.1.4.2 Location 

This study was conducted at the National Chao Tung University (Taiwan) using the motion vehicle 
simulator (MVS). 

2.4.1.4.3 Subjects 

A total of 17 subjects participated in this study, with each subject participating in data collection 
on 3 separate days, performing multiple tasks per day, producing 855 data recordings. 

2.4.1.4.4 Apparatus 

This project required the use of a subject measurement platform and several instrumentation 
devices, described as follows: 

Driving Simulator.  The virtual-reality-based highway driving experiments will be conducted 
in a driving simulator consisting of a real vehicle mounted on the 6-DOF motion platform in a 
sound-reduced room. The driving simulator mimics realistic driving situations. All the control 
and stimuli system are developed by the C++ software.  

Electroencephalography (EEG).  A 70-Channel EEG amplifier system (SynAmps2, 
Compumedics Inc.), consisting of 64 monopolar, 4 bipolar and 2 high-level channels will be 
used to record brain electrical activity during eight different experimental recording sessions. 
Each channel has a dedicated 24-bit A-to-D converter, to ensure the most accurate sampling 
available. 

Eye Tracking System.  An SMI RED eye tracking system (SensoMotoric Instruments) will 
be used for measuring eye positions and eye movement during eight different experimental 
recording sessions. 

Actigraphy.  Wrist-worn actigraphs (Fatigue Science ReadiBand) will be provided to all 
participants to enable objective and accurate characterization of their sleep timing, duration, 
and quality, as well as model-based estimates of performance effectiveness, on a daily basis 
over the duration of the study. The ReadiBand actigraphs are small lightweight computerized 
accelerometer-based devices that digitize movement in six dimensions (x, y, z, yaw, pitch, and 
roll). Data from the actigraph is stored locally on the device and is retrieved by uploading the 
data to a computer via USB antenna and the data can be uploaded either to a cloud server 
anonymously for data archiving and sharing with collaborators or to the local hard drive of a 
computer. If the cloud server is used, no personally identifiable information (PII) will be 
associated with the data. 
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2.4.1.4.5 Demographics 

No demographic data is provided with this dataset. 

2.4.1.4.6 RWN_VDE Tasks 

Participants performed a series of tasks within this study, as shown in Figure 2-26. 

 
Figure 2-26. RWN-VDE Experimental Procedures 

2.4.1.4.6.1 Psychomotor Vigilance Test (PVT) 

Each participant sat in front of a desktop computer and completed ten minutes of the PVT 
paradigm. Subject reaction time was measured according to a button press after the appearance of 
a red dot in the center of the screen.  

A response was regarded as ‘valid’ if the reaction time (RT) was between 100 ms and 1.2 seconds; 
otherwise, the response was recorded as a lapse. For performance calculation, an RT of less than 
500 ms was accepted as a ‘correct’ response.  

2.4.1.4.6.2 Lane-Keeping Task 

To implement the driving task (see Figure 2-27), the virtual reality scene was constructed with the 
World Tool Kit (WTK) program, a C-based 3D graphic library. The program simulated driving a 
car at a certain speed (100 km/hr.) on the highway at night and automatically drifted away from 
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the cruising lane to the left or right side with equal probability. Participants had been instructed to 
steer the vehicle back to the cruising lane as fast as possible after becoming aware of the deviation. 
If the participants did not respond to the lane-perturbation event, falling asleep for example, and 
then the vehicle could hit the left or right curb of the roadside within 2.5s and 1.5s, respectively. 
The vehicle would then continue to move along the curb until it returned to the original lane.  

 

Figure 2-27. A Bird’s Eye View of the Event-Related Lane-Departure Paradigm 

Each lane-departure event is defined as a “trial” which includes three critical moments: “deviation 
onset” is the moment when the car starts to drift away, “response onset” represents the moment 
when the participant perceives the drift and begins to steer the car back to the cruising lane, and 
“response offset” is the moment when the car returns to the center of the cruising lane, and the 
participant ceases to rotate the steering wheel. The next lane-departure event occurs again 8 to 10 
sec after the “response offset.” The reaction time is defined as the interval between deviation onset 
and response onset in a trial. There were no other vehicles or stimuli that might disturb the driver’s 
attention. This was intentional, in order to create a driving condition likely to induce fatigue. 
Participants’ cognitive states and driving performance were monitored via a surveillance video 
camera and the vehicle trajectory throughout the experiment. 

2.4.1.4.6.3 Dynamic Attention Shifting (DAS) 

In the study, we proposed the two types of experimental tasks, including a lane-keeping driving 
task (LKT) and dynamic attention shifting task (DAS). In the lane-keeping driving task, subjects 
were seated in a vehicle and driving scenes were simulated at high speed (100 KMH) along a 
virtual 4-lane road (two lanes in each direction) without other traffic. Throughout the experiment, 
the computer program generated a random perturbation (deviation onset) and the vehicle simulator 
drifted away the cruising lane to left or right lands with equal probability automatically. At lane-
departure events onset, subjects were required to steer the vehicle back to the cruising lane as soon 
as possible using the steering wheel (response onset), and hold on the wheel after the car returned 
to the approximate center of the cruising lane (response offset). The subject’s reaction time (RT) 
to each lane departure trial is defined as the interval between deviation onset and response onset. 
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At the deviation onset, the car was randomly drifted either to the left or right during the lane-
keeping driving task. When the subjects detected the deviation, they were instructed to steer the 
car back to the cruising lane quickly by turning the steering wheel. The latency between the 
deviation onset and turning the steering wheel was defined as the reaction time (RT), as shown in 
Figure 2-28. 

 

 

Figure 2-28. Reaction Time and Response Time Metrics 

In the dynamic attention shifting task there are multiple forms of stimuli, including spoken words 
and written words. Subjects were asked to differentiate whether the stimulus presented in either 
visual or auditory were a given target or not, which mimicked driving attention shift event. At the 
beginning of each “round” a warning cue, the word “attention”, was played on the left (right) 
screens or by the left (right) speakers was followed by a series of stimulus. Each round contained 
4-6 stimuli and subjects had to respond to the targets and ignore the non-targets. The auditory 
stimuli were two-tone patterns. An example of a visual stimulus and response (see Figure 2-29. 
Event-Related Target Identification Paradigm) shows that the visual stimuli were presented as red 
letters. 

 
Figure 2-29. Event-Related Target Identification Paradigm 

Among the words, subjects were asked to respond to animal words and to ignore the non-animal 
words. When the subjects detected that stimuli on the left (right) screen or from the left (right) 
speaker were animal types, and matched the type of warning, they were asked to press the left 
(right) button mounted on the steering wheel (see Figure 2-30) 
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Figure 2-30. Steering Wheel 

The study design, shown in Figure 2-31, features three conditions with different stimulus onset to 
investigate neural correlates of shifts of attention between the lane-departure events and a dynamic 
attention shifting event. The lane-keeping driving task in Case 1 was single-task. Case 2 and Case 
3 were dual-task; two tasks simultaneously onset. The deviation onset and the visual target 
stimulus appear in Case 2. The deviation onset and the auditory target stimulus in Case 3. On 
average, there were 60 occurrences of each case during every 15-min experimental session. 

 
Figure 2-31. RWN-VDE Experimental Conditions 

2.4.1.4.7 POC 

Chin-Teng Lin (ctlin@mail.nctu.edu.txw), NCTU, Principle Investigator 
Scott Kerick (scott.e.kerick.civ@army.mil), ARL, Research Collaborator 
Dave Hairston (william.d.hairston4.civ@army.mil), ARL, Research Collaborator 

mailto:ctlin@mail.nctu.edu.txw
mailto:scott.e.kerick.civ@mail.mil
mailto:william.d.hairston4.civ@mail.mil
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2.4.1.5 TNO FLERP Experiment (TNO_CANCTA_FLERP) 

The p300 event related potential (ERP), a positive peak occurring in the EEG signal roughly 300 
ms after a sensory event, indicates that an observer’s attention has been drawn. It has been shown 
to reliably distinguish between top-down defined ‘targets’ and ‘non-targets’, even on a single ERP 
basis, e.g. in cases where observers are asked to pay  attention to the letter ‘p’ presented in a stream 
of successively presented letters. However, in typical P300 studies and (Brain-Computer Interface) 
applications, target and non-targets are imposed to the observers who are asked to not move their 
eyes. In contrast, observers actively and purposefully move their eyes in most real world search or 
monitoring tasks. We are interested in using fixation- rather than stimulus locked ERPs (FRPs) as 
a means to determine whether observers are looking at a target (i.e. a relevant object or not). Few 
studies have examined fixation-locked late ERPs, but both ARL and TNO already performed 
several studies in this respect. In Brouwer et al. (2013, 2014) it has been shown that distinguishing 
between target and non-target fixation is possible above chance on a single FRP basis, even when 
controlling for potentially confounding factors such as saccade length and low-level visual 
features.  

2.4.1.5.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL/TNO 
Protocol Number: ARL 15-128 
Protocol Name: “Fixation-locked EEG” 
Contract: W911NF-10-D-0002-0020 

2.4.1.5.2 Location 

The study was conducted at the TNO laboratory (Netherlands). 

2.4.1.5.3 Subjects 

Twenty-one participants (nine males, twelve females) between the age of 19 and 30 (average age: 
22, 9) were recruited through the participant pool of the Netherlands Organization for Applied 
Scientific Research (TNO). None of the participants wore glasses. Each participant received a 
monetary reward for his or her time and travel costs. All participants signed an informed consent 
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form preceding the experiment. This study was conducted in accordance with the Army Research 
Laboratory’s IRB requirements (32 CFR 219 and DoDI 3216.02). 

2.4.1.5.4 Apparatus 

The task was presented on a 19-inch flat-screen monitor (Dell 1907FP Flat panel 19”). The screen 
resolution was 1280x1024 and the refresh rate was set at 60 Hz. Participants were located 
approximately 40 cm from the screen. Audio output was coming from a dual speaker set (TEAC 
PowerMax 60/2) placed left and right of the screen. 

Gaze and pupil size were recorded at 60 frames per second using SmartEyePro V6.1.6 (Smart Eye 
AB, Göteburg, Sweden). This system consists of two cameras (Basler acA640-120gm, HR 8.0 mm 
lens) placed at the left and right side of the screen.  

EEG and EOG signals were recorded using an ActiveTwoMK II system (BioSemi, Amsterdam, 
Netherlands) with a sampling frequency of 512 Hz.  For EEG, 32 active silver-chloride EEG 
electrodes were placed according to the 10-20 system and were referenced to the Common Mode 
Sense (CMS) active electrode and Driven Right Leg (DRL) passive electrode. Four EOG 
electrodes (BioSemi Flat Active electrodes, Amsterdam, Netherlands) were used to record eye 
movement. Two EOG electrodes were placed at the approximately 0.5 cm off the lateral canthi of 
both eyes, and were used to record horizontal eye movement. Another two EOG electrodes were 
placed above and below the left eye to record vertical eye movement and blinks. The impedance 
of all electrodes were <25 kΩ. 

2.4.1.5.5 Demographics 

Demographic information provided with this dataset includes subject ID, gender, and age. 

2.4.1.5.6 FLERP Tasks 

The experiment features two tasks: a monitoring task and an auditory math task. In the high load 
condition, participants performed both tasks. In the low load condition, they only needed to 
perform the monitoring task, even though the math task was still played to keep auditory 
stimulation constant across conditions. 

Monitoring task: 

Participants were asked to monitor 15 systems, represented by strings of symbols on a screen and 
placed in three rows of five columns. There were three different system conditions: hidden 
(‘####’), working as intended (‘#OK#’) or system failure (‘#FA#’). At the start of a trial, all system 
conditions were hidden. Then, each of the systems was successively highlighted for 1s (1027 ms) 
by displaying a square around it while its condition changed from ‘####’ into either ‘#OK#’ or 
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‘#FA#’ (see Figure 2-32). Highlighting the systems happened in random order, except for that two 
subsequently presented systems were never further apart than two steps in horizontal direction and 
one in vertical direction, or two vertical and one horizontal. The next highlighted system was 
always in peripheral vision such that it was impossible to distinguish between ‘#OK#’ or ‘#FA#’ 
without making a saccade. After all system conditions had been shown, empty boxes appeared at 
the system locations and the participant had to indicate which systems failed during the trial by 
clicking the appropriate boxes with the left mouse button. When finished, the participant pressed 
the OK button at the top left of the screen. Every trial, two, three or four ‘#FA#’s were presented. 
The amount and the ‘#FA#’ locations were chosen randomly. 

 
Figure 2-32. FLERP Monitoring Task 

 
Math task: 

The math task was an aurally presented sum consisting of six numbers between 6 and 12. Only 
addition (+) and subtraction (-) operations were used. The first number was presented one second 
after the start of the monitor task, and every 2660 ms another number was presented. Thus, the last 
number was presented after 14.3 seconds. When participants had to perform the math task (i.e. in 
the high load condition), they were required to give the answer of the sum after having indicated 
where the ‘#FA#’s were located. This was done by typing the answer and pressing enter. In order 
to motivate participants to perform the math task so that the conditions would actually differ, they 
received feedback on their answer. If the answer was incorrect, the correct answer was shown. 

For each of the load conditions, participants performed 8 blocks of 11 trials. High and low load 
conditions were presented alternately, starting with the high load condition. 

2.4.1.5.7 POC 

Anne-Marie Brouwer (anne-marie.brouwer@tno.nl), TNO, Primary Investigator 
Jon Touryan (jonathan.o.touryan.civ@army.mil), ARL, Associate Investigator  
Anthony Reis (anthony.j.ries2.civ@army.mil), ARL, Associate Investigator 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Engineer 

mailto:anne-marie.brouwer@tno.nl
mailto:jonathan.o.touryan.civ@mail.mil
mailto:anthony.j.ries2.civ@mail.mil
mailto:tjohnson@dcscorp.com
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2.4.1.6 TNO ACC Experiment (TNO_CANCTA_ACC) 

Currently, vehicles behave the same way irrespective of most environmental circumstances (e.g. 
traffic density) or the driver’s mental state. For instance, Adaptive Cruise Control (ACC) systems 
(adaptive in the sense that they respond to vehicles in front) decelerate following a fixed velocity 
profile when you are approaching a vehicle driving at a lower speed. However, when traffic is 
busy, you are stressed and you do not want other cars to sneak in between you and the vehicle in 
front, you will probably prefer a stronger deceleration than when you are relaxed, on an empty 
highway, and your mother is in the passenger seat. Our ultimate aim is to integrate the driver into 
the system such that comfort is enhanced within safety margins. This requires the use of 
information about the driving environment, the vehicle and the driver to adapt ACC settings in real 
time. ACC makes a good case for responding to the estimated wishes and intentions of the driver 
since 100% accuracy would not be required to create a system that is closer to what drivers like 
than one that is not adaptive in this sense at all. To make this possible we combine our expertise 
in developing and testing ACC systems (TNO Helmond), monitoring and affecting driving 
behavior using vehicle parameters and environmental variables (TNO Soesterberg, ARL, Zander 
Laboratories) and estimating cognitive and affective state through EEG and other physiological 
variables (TNO Soesterberg, ARL, Zander Laboratories). 

2.4.1.6.1 Protocol 

The research protocol information for this study is as follows: 

 
Organization: ARL/TNO 
Protocol Number: ARL 16-038 
Protocol Name: “Detecting Unexpected Adaptive Cruise Control (ACC) Behavior” 
Contract: W911NF-10-D-0002-0026 

2.4.1.6.2 Location 

Data collection for this experiment took place at the RDW 
Testcentre in Lelystad, the Netherlands (Figure 2-33). The facility 
featured a circular dedicated track (100m radius). 

https://www.rdw.nl/sites/tgk/englishversion/Paginas/Test-Centre-Lelystad-
(TCL).aspx?Path=Portal/TGK/English%20version/Testing 
 

Figure 2-33. ACC Test Course 

https://www.rdw.nl/sites/tgk/englishversion/Paginas/Test-Centre-Lelystad-(TCL).aspx?Path=Portal/TGK/English%20version/Testing
https://www.rdw.nl/sites/tgk/englishversion/Paginas/Test-Centre-Lelystad-(TCL).aspx?Path=Portal/TGK/English%20version/Testing
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No other traffic was present during the ACC task. An experimental leader was present in the 
backseat of the car during the whole experiment. 

2.4.1.6.3 Subjects 

Fifteen participants (9 men, 6 women; age range: 24-60 years) were recruited from the TNO 
research participant database to take part in the experiment. Participants possessed a driving 
license for at least three years. They received a monetary reward to make up for their travel and 
time. The study is in accordance with the Declaration of Helsinki and has been approved by the 
local ethics committee. All participant signed an informed consent form prior to taking part in the 
experiment. 

2.4.1.6.4 Apparatus 

The experimental vehicle (shown in Figure 2-34) was an instrumented Toyota Prius (TNO 
Helmond), capturing vehicle state and driver performance data via the CAN bus, and MobilEye 
system. 

 

Figure 2-34. ACC Instrumented Vehicle 

 
Subjects were instrumented with a BioSemi 64 (+8) channel EEG system, as depicted in Figure 
2-35. EEG electrodes were placed according to the International 10-20 system. For better signal 
understanding and to facilitate artefact removal, the experiment team also recorded the following 
modalities, collected through the external channels (non-scalp) of the BioSemi data acquisition 
system: 

1. EOG (electrodes were placed above and 
below the left eye of the participant) 

2. EMG (electrodes where placed at the neck 
of the participant, 2 on the left trapezius 
muscle and 2 on the right trapezius muscle, 
3 cm above each other)  

3. ECG (sensors at right collarbone and the 
lower left rib).  
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Figure 2-35. ACC Engineering Test Participant 

 
All physiological signals were recorded at a sampling rate of 512 using a BioSemi amplifier (USA, 
BioSemi Active-Two) 

2.4.1.6.5 Demographics 

Demographic information provided with this dataset includes subject ID, gender, and age. 

2.4.1.6.6 ACC Tasks 

Participants were tested individually in the car and asked not to make unnecessary movements. 
They started with 10 practice trials to get familiar with the task and settings, followed by 300 
experimental trials. Participants were told that we are working on detecting a driver’s desired 
deceleration settings of an ACC, without requiring the driver to communicate this desire explicitly. 
We told them that in this stage, we cannot do that yet and therefore, we represent the driver’s wish 
concerning either strong or soft braking by presenting a human voice stating the desired setting. 

 

Figure 2-36. Events Comprising an ACC Experimental Trial  

The car drove at 35 km/h on the track when a human voice indicated the desired deceleration 
(strong or weak). The participant pressed a lever down to activate the ACC deceleration. Before 
the deceleration, the ACC announced through a computer voice whether it would decelerate 
strongly or weakly. In 80% of the trials the wish of the human voice was followed (match trial), 
but in 20% the deceleration profile did not match the human voice (mismatch trial). A variable 
time between 0.5 and 3.5 s after the ACC’s announcement the car decelerated to 25 km/h, 
following a steep or a shallow velocity profile (strong or weak deceleration, with a maximum 
deceleration of respectively 3 or 0.7 m/s2; where going from 35 to 25 km/h took respectively 0.9 
or 2.8s). Then the human voice asked the driver to accelerate again. The driver indicated whether 
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the ACC had followed the desired type of deceleration or not, and pushed the lever up to have the 
ACC accelerate to 35 km/h. This series of activities is represented as a timeline in Figure 2-36. 

The vehicle braked strongly in half of the trials, and softly in the other half. After every 40 
experimental trials there was a short break to relax and turn around the car into the other direction. 
The total drive lasted for about one and a half hours. 

2.4.1.6.7 POC 

Anne-Marie Brouwer (anne-marie.brouwer@tno.nl), TNO, Primary Investigator 
Kaleb McDowell, ARL, Associate Investigator  
Oded Flascher, DCS, Associate Investigator  
Matthew Jaswa (mjaswa@dcscorp.com), DCS Corp., Systems Engineer 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Engineer 

2.4.1.7 Assessment of Intra- and Interpersonal Brain and Behavioral Dynamics of Driver-
Passenger Dyads during Real-World Driving 

This project is referred to using the identifier RWN-VDEDP (Real-World Neuroimaging in 
Vehicle Driving Environments with Driver and Passenger). 

In military and civilian domains, human drivers are gradually being replaced by automated 
systems. This is precipitating a shift towards humans experiencing vehicles from the primary 
perspective of being a passenger. While decades of research have provided vast amounts of data 
regarding vehicle drivers, very little is known about how people experience being a passenger in 
a vehicle that they do not control. Whether driven by another human or an automation, 
passengers have regular opportunities to make decisions regarding ongoing driving performance, 
and in many cases these decisions lead to interventions. Such passenger behaviors may critically 
impact vehicle behavior and, more importantly, when and how they occur is likely to be subject 
to a variety of factors such as individual decision-making style, driving preferences, level of 
fatigue, risk tolerance, and personality (French et al, 1993; Recarte & Nunes, 2003; West, 
Elander, & French, 1992). In particular, human decisions regarding cooperative behaviors such 
as reliance and compliance, are believed to be significantly impacted by the amount of trust held 
in the paired agent, whether human or automated (Madhavan, Wiegmann, & Lacson, 2006; 
Parasuraman & Riley, 1997), and some individuals are more susceptible to peer influence when 
prompted to adopt risk-taking behavior (Wasylyshyn et al., under review). Therefore, it is 
important to understand what individual state and trait factors lead to passenger trust in a vehicle 
operator as these are likely to inform the design of intelligent communication systems supporting 
future human-agent teaming solutions that will address long-term Army Warfighting challenges. 

Among the many factors believed to be important to a human’s ability to trust is the degree to 
which the agent to be trusted (trustee) has intentions that are transparent and communicated in a 

mailto:anne-marie.brouwer@tno.nl
mailto:mjaswa@dcscorp.com
mailto:tjohnson@dcscorp.com
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manner that is understandable (c.f. Barnes, Chen, & Hill, 2017). This indicates a cognitive 
component to trust that develops in the context of an emotional tone, or valence, defined within 
the trustor-trustee interaction (Borum, 2010). A prominent line of inquiry that may be brought to 
bear on the formation of trusting relationships is how emotional valence, such as that induced by 
a relatively positive versus neutral tone, can enhance the transfer and retention of information 
through communication (for a review, see Delli Carpini, 2012). We adopted a working hypothesis 
that positive emotional valence in human interactions would likewise improve communication 
efficacy, as evidenced by strengthened learning and memory, and this increase in positive 
communication might also lead to increased perception of trust. More specifically, we 
operationalized positive emotional valence through the experimental manipulation of “humor” and 
then hypothesized that psychological processes involved with intrinsic reward (e.g., satisfaction of 
hearing a joke) as well as the desire to share the information with others, would precipitate positive 
effects that enable more effective communication. This hypothesis was based on previous studies 
showing that humor modulates reward centers in the brain and that reward-related learning 
enhances memory (Adcock, et al., 2006; Mobbs, et al., 2003). Though humans and driving 
automations are not direct analogues, it has been shown that people have a strong tendency to 
attribute human motives to non-human objects (Heider & Simmel, 1944). Moreover, emotional 
context of interpersonal interactions can have an impact on communication effectiveness, but 
research has shown that an individual’s sensitivity to emotion can be strongly influenced by recent 
sleep loss (Vandekerckhove and Cluydts, 2010; Wong et al., 2013). However, the interaction of 
sleep loss and emotional state fluctuations is not well understood, particularly in naturalistic 
contexts (Walker and Harvey, 2010). Thus, monitoring long-term sleep patterns and daily 
estimates of the emotional valence of social interactions provided a novel approach to understand 
how such factors influence passenger perceptions of driver trustworthiness. By better 
understanding the influence of naturalistic fluctuations in state across days and weeks and its 
interaction with trust development, our research enables future extension to examining how such 
findings may translate to improved passenger trust in driving autonomy.  

We developed a novel paradigm that allowed us to track driver-passenger communication as a 
function of emotional valence, here manipulated by use of humor, and whether or how these 
factors influenced the development of passenger trust in the driver. Further, we stepped deeper 
into these socio-psychological processes by examining the individual and joint brain and 
peripheral physiological activations that reflect the changing individual and interpersonal 
interaction dynamics. Prior research demonstrates that brain activity during basic social tasks can 
predict driving risk and susceptibility to social influence (Cascio et al, 2015; Falk et al, 2014; 
Schmälzle et al, in press; Wasylyshyn et al, under review). Therefore we experimentally 
manipulated emotional valence (humorous vs. neutral framing) within subjects and measured the 
degree to which that valence alters behavioral indicators of passenger trust in the driver’s 
capability (Aim 2, below), success of communicating with the driver (Aim 3), and how these 
relationships are altered depending on the driver-passenger interaction frequency outside of the 
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experimental protocol as well as broader characteristics of each participant’s general social 
network (Aim 4). Finally, across all of these aims, we sought to understand how performance is 
influenced by naturalistic changes in an individual’s cognitive state, indexed by sleep history, 
physical activity, and daily estimates of social interactions and risk tolerance. This project 
leveraged a unique combination of an instrumented vehicle, the manipulation and measurement 
of interpersonal communication dynamics, and rich multi-modal streams of physiological data 
captured in a real world driving task with high ecological validity. This interdisciplinary 
approach thereby provided new insights into the social and psychological experiences of vehicle 
passengers while traversing actual roads in natural traffic conditions, translating our research 
from simulated laboratory environments to more holistically-considered operational settings 
reflecting challenges to be addressed in top priority Army technology areas such as man-
unmanned teaming in complex urban environments. 

This research aimed to gain new insights into problems associated with real-world, role-based 
human variability during driver-passenger interactions in a vehicle traveling on typical roadways 
in regular traffic. Both inter- and intra-individual variability were of interest; particularly factors 
associated with state variables, such as the communication tone, as well as more persistent trait 
influences including individual biases or proclivities (e.g., propensity to trust) and those from the 
individual’s social network. Further, we were interested in inter- and intra-individual variability 
that arises from naturalistic fluctuations in cognitive state, indexed by sleep history, physical 
activity, daily estimates of quality of social interaction, and daily estimates of risk preferences. 
The aims for this goal included: 

Aim #1. We investigated whether our previous inferences regarding brain-behavior relationships 
from simulated driving environments translate to natural task environments. 

Hypothesis 1a: Using a variant of Granger causality (Garcia et al., 2017), we expected that 
driving behavior would predict brain activity during time periods of quiescence in the drive, 
whereas brain will predict driving performance when the driver is navigating traffic, making 
route decisions, or listening to the passenger.  More specifically, we expected that news stories 
that the driver remembers well (indexed by correct memory on the post-drive task) will 
correspond with time frames when the brain is less tightly coupled with the driving performance 
and/or different brain regions are engaged than the ones identified from the simulated 
environment where the driver was alone.  

Hypothesis 1b: We expected that drivers who had recent sleep loss and/or low levels of physical 
activity would have weaker coupling between the brain activity and their driving and listening 
tasks. That is, the driver will have increased timeframes where the driving behavior predicts their 
brain activity based on decreased abilities to focus on non-primary tasks. 

Aim #2. We assessed the effect of emotional valence in conversation, as operationalized through 
humor, on trust in a driver. 
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Hypothesis 2a: Exposure to and engagement with humorously framed material would increase 
the level of trust between passenger and driver compared to material with neutral framing.  More 
specifically, through both covert behaviors and overt ratings, passengers who are more 
responsive to the humor manipulation would likewise show higher trust in the driver’s 
performance as compared with passengers that respond equally to humorous and neutral 
material. 

Hypothesis 2b: We expected that drivers who reported daily social interactions that have been 
positive and rewarding would have an accurate memory for the news stories told by the passenger 
and increased ratings of trust. 

Aim #3.  We examined the degree to which emotional valence impacts success of communication. 
Hypothesis 3a: Given that many key tasks require coordination between team members, one of 
whom may be operating a vehicle, it is critical to understand how successful communication is 
accomplished in this environment. We predicted that information framed humorously would be 
more successfully communicated between passenger and driver than information framed with 
neutral valence. To demonstrate this, we examined three sub-hypotheses:  

a) Memory for information in the humorous framing condition would be greater than the neutral 
condition.  

b) Increased synchrony in neural responses to information would be observed between driver 
and passenger during the drive when originally presented with humorous (vs. neutral 
framing).   

c) We predicted that greater levels of inter-subject correlation (ISC; Hasson et al, 2008), as 
measured using whole brain EEG, would be associated with higher accuracy on the post-
drive memory tasks.  

Hypothesis 3b: We expected that drivers who had reported daily social interactions that have 
been positive and rewarding would have increased ISC with their passengers. Likewise, we 
expected that drivers with minimal sleep loss and higher activity would remember more stories 
and score higher on the memory tasks. 

Aim #4. We examined how individual differences in social network structure are associated with 
the success of communication during the drive. 

Hypothesis 4a: Based on our recent work (Schmälzle et al, 2017), we expected that participants 
with more dense networks would show increased memory performance, as they have a social 
structure that reflects tight connections where information is routinely brokered among 
colleagues and therefore requires successful listening and retention skills. As a more specific 
analysis of the dyad, we also indexed the frequency of interaction between the driver and 
passenger, and again, we expected that previous connection would increase the success of 
communication, indexed by trust ratings, higher inter-subject correlation during in-drive 
communication tasks, and memory performance on the post-drive tasks. 
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Hypothesis 4b: We expected that individuals with more dense social networks would be more 
willing to take risks, and this would be reflected in the daily estimates of risk tolerance. 
Concomitantly, given the connection between trust and risk, we anticipated individuals who 
are more risk tolerant to show greater propensity to trust as well as higher ratings of the 
trustworthiness of their dyad partner. 

2.4.1.7.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL 
Protocol Number: ARL 17-092 
Protocol Name: “Assessment of Intra- and Interpersonal Brain and Behavioral Dynamics 
of Driver-Passenger Dyads during Real-World Driving” 
Contract: W911NF-10-2-0022 

2.4.1.7.2 Location 

Data for this research was collected at US Army Research Laboratory-Human Research and 
Engineering Directorate (ARL-HRED) using a road network in the greater Harford County area 
that is patrolled by Maryland State Police, Barracks M. 

2.4.1.7.3 Subjects 

A total of 44 subjects, paired into 22 dyads, participated in this study. In all but one dyad both 
subjects acted as driver and passenger during different sessions on different days. Only one of 
the subjects acted as driver for the 44th dyad, however for two other dyads, the EEG data were 
corrupt. Therefore a total of 40 trials sessions were conducted that yielded useable EEG 
recordings and useable vehicle data. 92 total useable EEG recordings were produced, 42 from the 
driver subject and 50 from the passenger subject.  

2.4.1.7.4 Apparatus 

Testbed Vehicle: The primary location of data collection was within a standard commercially-
available vehicle that was leased for use in this research (Figure 2-37). The specific vehicle for 
this experiment was a 2016 Ford Fusion Titanium 
(http://www.ford.com/services/assets/Brochure?bodystyle=Sedan&make=Ford&model=Fusion&
year=20164). The leased model included the standard Ford 2.0L EcoBoost® I-4 engine, 
automatic transmission, 4-wheel anti-lock braking system, electric power-assisted steering, and a 
full suite of safety features. 
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Figure 2-37. Stock Interior and Exterior Views of the 2016 Ford Fusion Titanium 

ARL MARIN System: The ARL Multi-Aspect Real-world Integrated Neuroimaging (MARIN) 
system was designed to leverage and integrate COTS technology to enable monitoring of 
psycho-physiological, behavioral, and subjective experience changes in real-world, daily life 
environments. The MARIN was validated, with user assessment, through technology evaluation 
that was approved by administrative review of the ARL IRB Chair as described in protocol # 
ARL 13-036 (“The MARIN System: Initial Usability and Technology Validation”, P.I. T.J. 
Doty). The MARIN was configured for this experiment to enable logging of 
electroencephalographic (EEG), electrocardiographic (ECG), electrodermal (EDA), 
photoplethysmography (PPG), respiratory, and physical activity, and skin temperature. The 
components of the system included: 

• EEG:  ABM B-Alert X24 System   
The B-Alert X24 Wireless EEG system (Advanced Brain Monitoring, Inc, Carlsbad, CA) uses a 
flexible electrode strip that was affixed to an adjustable headband and fit snugly to the head of 
the participant. The flexible strip houses a set of flat electrodes in standard international 10-20 
scalp locations.  Cylindrical foam pads were moistened with a conductive paste then placed 
under each electrode to serve as the conductive medium between scalp and sensor. In addition, as 
part of the B-Alert headset, a wireless transmitter was attached to the headband at the back of the 
head allowing complete freedom of head movement as compared with a standard wire-tethered 
system. This transmitter sent the EEG data to a separate device for data logging.  The weight of 
this system was less than 200g. 

• ECG, respiration, movement, and posture: Zephyr Bioharness 3 

The Bioharness 3 (Zephyr Performance Systems, Annapolis, MD) is a small, lightweight (50 g) 
device that was worn around the upper torso, directly against the skin of the participant. The 
Bioharness enables the capture and wireless transmission of peripheral psycho-physiological data 
of the wearer, including medical grade ECG, respiration, movement, and posture, without 
requiring tethering to external data collection equipment or any other hindrance to free 
movement. 
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• In-Drive EDA, PPG, skin temperature, and actigraphy: Empatica E4 

The Empatica E4 (Empatica, Inc., Boston, MA) is a small, lightweight, wrist-borne device for 
real-time capture and wireless transmission of psycho-physiological data.  The E4 contains four 
embedded sensors that provide data regarding PPG, EDA, skin temperature, and physical activity 
(actigraphy) through 3-axis accelerometry. The device has the ability to operate in data streaming 
mode as well as in an in-memory mode enabled by internal flash memory for continuous data 
recording when away from a data logging device. 

• Daily Actigraphy for Sleep and Physical Activity: Readiband 

The Readiband is a lightweight, wrist-borne device that measures sleep and physical movement 
through high-frequency 3-axis accelerometry. The device uses the proprietary SAFTE Fatigue 
Model to classify sleep and wake states. The device may be worn for 30 days on a single charge 
and stored all logged data until downloaded for storage at ARL. 

• Mobile Data Recording 

Data logging in the MARIN system was enabled by a custom programmed Android-based 
mobile device that could be easily carried with the participant or mounted in the vehicle. The 
mobile device received and stored data streamed from the psycho-physiological devices. 

 

Figure 2-38. The Automotive Computer Shown Securely Mounted on the Rear Bench Seat (A), System 
Monitor Shown Securely Mounted to the Rear Headrest of the Passenger Seat (A, B) 

Ergoneers Vehicle Test Kit: Figure 2-38 shows the components of the vehicle test kit (Ergoneers 
GmbH, Manching, Germany), which is a COTS system for conducting natural driving studies. A 
single Automotive Computer comprises a complete system for data recording and analysis. The 
vehicle test kit allows integrated and synchronized acquisition of data from humans (i.e. video and 
audio), vehicle behavior (i.e. vehicle Controller Area Network, or CAN, interface, a Mobileye® 
camera-based lane-position tracking, GPS), and custom inputs. System components include: 

• Video/Audio Recording System  
Video data was captured using 4 cameras mounted on the inside and around the testbed vehicle 
in positions that did not obstruct the driver’s view of the roadway. Two cameras faced into the 
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cabin, one trained on each participant, and two captured external environment images. All video 
data was primarily used to facilitate interpretation of later quantitative data. Audio data was 
recorded in order to capture dialogue between the participants and the audio cues. Participants 
were made aware of the recording and archival of the video and audio data, as well as steps taken 
to prevent the release of any personally identifiable information. 

• Passenger Seat Sensors 
Passenger postural responses during the drive were captured through 
an array of force-sensing resistors embedded in a fabric cover fitted 
over the passenger seat.  The individual inputs from the force-sensor 
array were multiplexed and integrated through a custom Arduino 
card, which then transmitted continuous voltage outputs to the test kit 
Automotive Computer through a single USB connection. 

Figure 2-39(left) provides a depiction of the configuration of the two 
arrays of force sensing resistors, and numbering corresponds with 
labels inside the data files for Seat and SeatBack variables. 

• Standard PCs, Monitors, and Input Devices  
In addition to the Ergoneers Automotive Computer, this project required the use of a Microsoft® 
Surface Book computer for passenger task and stimulus control and two Smartphones running 
the Android operating system (see MARIN, above). Each device recorded a common vehicle on-
board diagnostic (OBD) CAN bus signal to enable synchronization across all data streams 
(MARIN inputs included). The monitor of the vehicle test kit was mounted securely to the 
headrest of the passenger seat, and made use of a wireless keyboard for input. Tablet Surface 
Book and Android devices made use of their native input methods (built-in keyboards and touch 
screens). 

Figure 2-39 provides an integrated, systems-level overview of the various apparatus and 
equipment that was used to support this experiment. 

Figure 2-39 Configuration 
of sensor arrays on the 

passenger seat 
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Figure 2-40. Overview of System Developed to Support the Proposed Experiment 

2.4.1.7.5 Demographics 

Demographic information collected for this study includes subject ID and age, however, these data 
were not processed in the current version of the data set. For this reason, this demographic data  
not currently available in the public raw data either; it is available, but would need to be mined 
from the Participant Information Questionnaire. 

2.4.1.7.6 RWNVDEDP Tasks 

Figure 2-40 provides a timeline of the participant experience in this experiment. The top blocks 
in the figure indicate weeks wherein the participants had daily text-message based experiment 
interactions interspersed with the driving sessions; the lightly shaded squares indicate potential 
variability due to scheduling. The blue shading indicates when the short social interaction 
questions were asked throughout and the yellow and orange shading in the Interim and Follow-
up periods indicate two different additional reminders depending on the content of the JAVI task 
from the corresponding drive (physical activity or sleep). The final square along the top indicates 
that Close-out happened virtually by secure URL. The timeline for the two driving sessions is 
indicated underneath, as indicated by the blue arrows. Session time begins at the top and 
progresses downward. PA = Passenger timeline, DR = Driver timeline. 
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Figure 2-41. RWNVDEDP Timeline 

Intake 

When the individual volunteered to be a participant in the study, they were first asked to 
complete a separate 30-to-45-minute intake session. This intake session began with the informed 
consent dialogue between experimenter and participant (guided by the Informed Consent 
Document, ICD). After providing fully informed consent, the participants completed a set of 
questionnaires and psychometric tests. First, the Participant Information Questionnaire (PIQ) was 
administered to gather a limited set of information about demographic factors that could 
influence the results. Questions included standard demographic information (age, occupation, 
education) and driving experience. In addition to individual demographics, we were also 
interested in broader social influences and beliefs regarding health behaviors. 

A tool developed in the Falk Lab at UPenn was used to gain a better understanding of each 
individual participant’s relationship with their broader social network. This tool, known as 
Friendly Ocean, included questions about their social interactions online, in person, and over 
telephone and text messaging. We also asked specific, targeted questions to enable 
characterization of the general relationship between the dyad partners (Driver-Passenger Social 
Interaction Questionnaire, DPSI) and, at the end of all data collection, among all study 
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participants who opted-in to inclusion in a Study Social Network Information Tool. Participants 
also provided responses to two brief questionnaires regarding their general daily social 
interactions. These included 2-3 questions each about their Most Recent Social Interaction 
(MRSI) and their Daily Diary Social Interactions (DDSI). To gather information regarding the 
beliefs participants held regarding health activities (physical activity and sleep habits), they were 
asked to respond to PABS and SHBS surveys based on the work of Fishbein and Raven (1962). 
These surveys were repeated at three additional points in the experiment (after each drive and at 
close-out). 

Beyond demographic factors, we also used instruments that provided measures of general 
aspects of each individuals’ personality. The mini-IPIP (mIPIP; Donnellan et al., 2006) provided 
insight into the larger scope of the human-related factors that influence trust and communication. 
In particular, the mIPIP efficiently indexes the well-established “Big Five” factors of personality, 
including extraversion, openness to experience, agreeableness, conscientiousness, and 
neuroticism. To obtain more direct measures of personality traits related to interpersonal trust, 
we also administered a Propensity to Trust (PTS) and Trustworthiness scales as described in 
Evans and Revelle (2008), which were drawn and validated using items from the International 
Personality Item Pool (Goldberg et al, 2006). The particular comparisons of interest in this case 
were the PTS for each participant as well as the stability of their perception of the 
trustworthiness (TWS) of their dyad partner. To provide a basis of comparison for the TWS, we 
also had participants respond to questions from the short form of the Social Desirability Scale 
(SDS), which indexes whether the participants are likely to be responding in ‘culturally 
sanctioned ways’. Finally, at an initial intake session and at each of the driving sessions, the 
participants completed a set of questionnaires to elicit risk preferences, including three about 
non-social risks and three about social risks using the Risk Elicitation Battery (REB). The sub-
items of the REB also provided the content for a daily indicator of risk orientation when not in 
the driving sessions. That is, in addition to the MRSI and DDSI, participants answered one 
question each day regarding their risk preference (the Daily Risk Question, DRQ, refer to 
protocol document for details). 

The investigator oriented the participants to the components of the experiment involved in daily 
monitoring and then obtained the participants’ preferred phone numbers, usual wake up times, 
and usual sleep time to allow for message scheduling. Next, the participant received an actigraph 
watch (Readiband) and was given an explanation about what it measures. 

Baseline Period 

There was a 2 – 5 week baseline period between Intake and Drive A. During that time, the 
participants wore the Readiband, and the data collected was used to establish participants’ 
baseline levels of physical activity and sleep habits. Participants received two text messages each 
day that included a link to an online set of risk and social interaction questions accessible 
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through a smartphone browser. The first daily text, which was sent sometime in the middle of the 
day based on the participant’s self-reported preferred wake up time, linked the participant to the 
MRSI and the second text, sent each evening, linked the participants to the DDSI. There was also 
a single risk-elicitation question (the DRQ) with each prompt. The data collected during these 
weeks was used to establish participants’ baseline social interaction tendencies. 

Drive A 

Prior to sensor preparation, each participant answered the questions on a custom-designed 
participation-readiness questionnaire to assess their general fitness to participate in roadway 
driving on that day. Once the readiness was confirmed, then participants provided baseline 
responses to the MSAQ. Participants were then outfitted with their set of physiological sensors in 
a climate-controlled space and each underwent a role-specific set of preparatory steps (see the 
vertical columns in Figure 2-40; PA = passenger and DR = driver). While the experimenters 
were placing the sensors on the participant and adjusting their calibration the passengers 
completed several single administration subjective instruments including the DPSI, REB, 
Perceived Stress Scale (PSS), and motivation Visual Analog Scale (mVAS). Both participants 
also completed a pre-drive TWS, a baseline stress scale (sVAS), and the Self-Assessment 
Manikin (SAM). 

The PSS is a short, 10-question inventory designed to assess the current level of stress of a given 
individual. The PSS indexes the general level of stress that an individual has been feeling for 
approximately the prior month. This inventory was used to provide data that would account for 
individual differences in the baseline level of stress that an individual participant had at the 
outset of this study. 

Visual Analogue Scales (VASs) efficiently provide indices of subjective state changes in 
response to the experimental manipulations. VASs are sliding scales anchored by the appropriate 
text descriptors at the two extremes of the slider. In general, VASs provide a visual guide for 
participants to rate their subjective perception of specific feelings or characteristics on a 
continuous scale by choosing a location between two extremes. For the current study we used 
such scales to index stress (sVAS), general motivation (mVAS), drive difficulty (dVAS), and 
traffic density (tVAS). 

The SAM was developed to provide an efficient and reliable method for assessing emotional 
state along the dimensions of pleasure, arousal, and dominance (Bradley & Lang, 1994). Here, 
we used a modified version that provides additional “anchoring” terms to assist the participants 
in selecting their responses (based on Schifferstein, Talke, & Oudshoorn, 2011). Similar to the 
well-known PANAS, this tool was intended to provide evidence of qualitative differences in 
basic dimensions of emotional state throughout the experiment. 
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After the setup was complete, the passenger was escorted to the vehicle where, using a tablet PC, 
they watched and rated the likelihood they would share each in a set of 16 news stories (half 
humorous, half neutral, randomly sequenced). Concurrently, the driver reviewed the route, 
vehicle controls, and safety procedures with an experimenter. Upon completion of their 
respective tasks, the driver and passenger both sat in the car and watched a short video that 
reviewed the flow of the tasks during the drive, the set of post-drive tasks, and discussed the role 
of the staff member. Next, the participants both sat comfortably with their eyes open in a resting 
state condition to record baseline measurements of their physiology. The participants were 
instructed to remain silent and looking forward during this period. 

A basic safety check was performed and the drive began, initiating the Open Course Driving task 
for the driver: 

• Task: During each drive, the driver listened to the passenger describing previously watched 
videos or a pre-recorded and amplitude modulated podcast (JAVI, described below). The 
driver was asked to hold casual conversation to a minimum during the drive and preferably, to 
restrict discussion to questions when they wanted clarification from the passenger during open 
and cued recall tasks (see below). In addition, the driver was instructed to drive in accordance 
with all applicable laws governing the use of roadways in the state of Maryland. 

• Purpose: The overall aim of this research was to examine human brain and behavioral state 
changes during functional tasks performed in a naturalistic setting, here defined as a natural 
environment that is not characterized by typical laboratory or closed-course constraints. 
Examining the participants provided a unique opportunity to observe brain and body state 
dynamics in response to conditions involving authentic risks and consequences that are not 
accessible in any laboratory simulation or otherwise controlled environment. Driving on an 
open course involving public roadways with minimally-controlled traffic and environmental 
conditions incurs similar, though not the same, risks as those which individuals experience 
when they commute in an automobile. Though a task of increased naturalism and risk, roadway 
driving remains constrained enough to allow for application of established and replicable 
analytic techniques. That is, due to the nature of the legal and procedural requirements for 
safely and properly conducting the task, driving contains essential behavioral elements (e.g. 
real-life risk, behavioral stability, a multitude of repeatable events, such as braking) that 
preserve both ecological and experimental validity necessary to facilitate later interpretation 
of the captured data. 

While they navigated the local roads in route to an interstate highway, an experimenter who was 
seated in the back seat pressed a button to begin the in-drive tasks of the experiment. First, the 
participants completed the Joint Auditory Verification Indicator (JAVI) task: 

• Task: In this task, both the driver and passenger simultaneously listened to a pre-recorded 
health-focused (sleep or physical activity) podcast that was 2-3 minutes in duration, and was 
amplitude modulated at 40Hz. They were encouraged, but not required, to discuss or answer 
any questions about the content of this podcast during the drive. 
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• Purpose: The JAVI serves as a shared listening task where both participants engage the same 
content, just as during the Memory Recall and Communication tasks. In the JAVI task, 
however, the participants do not speak and therefore the underlying neural activity across the 
participants should be more alike than when the passenger talks and the driver listens. Here, 
this will be done to verify the validity of collection of joint EEG in this high-noise/high motion-
artifact environment. That is, the increased similarity in task requirements for both participants 
provided a basis to estimate the level of neural synchrony that is measured during the inter-
subject correlation (ISC) analysis, a core component of all three hypotheses. Further, the 
podcast was amplitude modulated to overcome the decreased signal-to-noise ratio in the real-
world driving scenario by capitalizing on a research technique called steady-state evoked 
potentials (SSEPs). Also called frequency-tagging, this method uses different frequencies of 
visual flicker or amplitude modulation of auditory signals to target specific brain networks (for 
review, see Viallatte et al., 2010; Norcia et al., 2015), and SSEPs have also been highly 
successful in high noise EEG environments since they are narrow-band effects. Previous 
research has shown that a 40Hz modulation elicits a robust EEG oscillation (Galambos, 
Makeig, & Talmachoff, 1981), and it is outside the frequency ranges that dominate the task-
dependent oscillations of interest for our experimental questions (e.g., delta, theta, alpha, beta). 
Thus, this EEG oscillation had a bandwidth and center frequency that is common among 
participants, providing a robust, low-level sensory signal to benchmark and verify ISC 
analysis. Finally, the content of the JAVI podcasts provided messaging stimuli regarding health 
behaviors that are believed to contribute significantly to inter-individual variability in social 
dynamics. Therefore, the specific content of the JAVI podcasts can also be paired with 
messaging protocols that occurred outside of the driving sessions as well as with belief 
questionnaires administered both before and after the driving sessions to examine the 
participants’ responses to the social messaging (e.g. how their beliefs and behaviors changed 
as a function of the repeated messaging). 

Once on the interstate, the staff member pressed a button to begin the next task, and this 
triggered a 5-minute timer and an instruction on the tablet resting in the passenger’s lap to 
complete the open recall task: 

• Task: Before the drive began, the passenger watched a set of video clips that communicated 
news items. In total, there were 32 individual news items, each of which had a humorous and 
a neutral variant.  Trained actors narrated each news item once with each framing (humorous 
or neutral), yielding a total of (32 items x 2 actors x 2 framing) 128 possible clips. Any given 
participant only viewed a subset of 16 clips, half neutrally framed and half were humorously 
framed. Across the pair of dyad drives, each participant watched a separate, unique set of 16 
news clips when they were the passenger. During the initial viewing, the humorously-framed 
and neutrally-framed items were shown in a random sequence mixing both types. During the 
highway portion of the drive, the task for the passenger was to communicate the content of the 
news clips to the driver in two complementary tasks: (1) an open recall and (2) a cued recall. 
During the open recall portion, the passenger was prompted to tell the driver as much as they 
could remember about any and all of the stimuli to which they were exposed. The driver could 
ask questions during this period, and the passenger was instructed to answer the questions as 
well as briefly engage any discussion that developed about the news items. This period lasted 
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for a total of 5 minutes.  

• Purpose: This task served as the primary method for addressing the scientific aims of the 
experiment. Verbal communication was chosen as a natural and safe means of exploring both 
intra- and inter-individual patterns of brain-body states that are related to individual and 
coordinated cognitive aspects of behavior. For the passenger, the communication task was set 
in a context of a dynamic emotional valence that is controlled by news item framing. We were 
interested in assessing the influence of this valence on the effectiveness of communication as 
well as the formation of trust in the driver. Within this context, the communication recall task 
enabled examination of the relationship between experimentally controlled factors of 
emotional valence (item framing), while the EEG analysis focused on correlation between 
brain signals as a proxy for shared representation of the discussion topic and communication 
effectiveness. Two different types of recall memory tasks were employed.  The open recall 
portion provided an indication of which news items were encoded in the most salient fashion. 
For example, higher rates of recollection were expected for humorously framed as compared 
with neutrally framed items. 

Following the completion of the Open Recall task, the participant began the cued recall task. 
This task is similar to the open recall task, with the exception that during cued recall the 
passenger received 16 text-based cues reminding them of each of the individual stimuli in a 
randomized order that was different from the order originally presented, and then they were 
instructed to discuss each with the driver for 1 minute. The purpose of the cued recall task was to 
allow experimental and analytic access to memories that require a small prompt, which engages 
slightly different cognitive mechanisms. 

For cued recall, the tablet first provided a set of instructions then proceeded providing the first 
cue to talk about one of the news clips watched. Each cue consisted of a short text-based snippet 
of the news story. The passenger had 1 minute to describe each news clip, and the driver again 
listened and discussed or asked questions as appropriate. Halfway through this cued recall task, 
the task paused automatically while the driver exited the interstate to turn around and begin the 
return portion of the drive. During this time, the passenger was prompted on the tablet to 
complete their first rating of their trust in the driver using the Trust in Driver Scale (TiDS), as 
well as their second response to the SAM. They also indicated their perception of the current 
drive difficulty and the traffic density using the appropriate VASs (dVAS, tVAS). 

To assess the passenger trust in the driver in a manner comparable to the trust in automation 
literature we used an adaptation of a system trustworthiness questionnaire that was successfully 
employed in a previous ARL experiment (#ARL 15-023; PI: Metcalfe). The TiDS is an 
adaptation of the trust ratings used in the foundational trust in automation research of Muir and 
Moray (1996); it comprises four visual analogue scales that allow the participant to rate their 
impression of the competence, predictability, reliability over time, and dependability of the 
driver based on his or her performance to the point in time when the instrument is administered. 
This questionnaire was administered only to the passenger, once at the halfway point of the drive 
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and after completion of the full driving session. When analyzed, the participant’s responses were 
coded as having a value between 0 and 100, representing all possible values between the far left 
and the far right ends of the line, respectively. 

Once back on the interstate, the staff reinitiated the script, and the cued recall task continued. 
The passenger then proceeded to complete the remainder of the cued recall task. As the dyad 
exited the interstate and returned to the home location via local roads, they completed a second 
iteration of the JAVI task by passively listening to a second podcast about the benefits of 
physical exercise or sleep. After the audio was complete, the dyad completed the drive with 
minimal to no conversation as they returned to the home location. 

Upon return to the home location, the experimenter immediately verbally administered the 
Motion Sickness Assessment Questionnaire (MSAQ) to document any change in motion 
sickness symptoms as a result of the drive. The MSAQ is a standard motion sickness screening 
tool and was administered to address an unlikely, but possible experience that occurs with 
driving environments involving attention to screens rather than out of the windshield (such as in 
motion simulation and indirect-vision driving experiments). Motion sickness symptoms may 
include, but are not limited to: nausea, cold sweating, pallor, and vomiting, and, if severe 
enough, these symptoms may impair task performance. Therefore, as both a safety precaution 
and as a means to objectively record any occurrences of motion sickness, even if minor, the 
MSAQ was administered to the passenger prior to the experiment (as a baseline), following the 
conclusion of the driving session, and in the event that a passenger experienced motion sickness 
symptoms during the driving session. 

Next, the passenger used the tablet to complete the recognition memory task: 

• Task: In this task, the participants were presented the first sentence from each of the 16 original 
news items that they previously viewed (OLD) and 16 lure news items that are similar, but not 
exactly the same as a previous statement (NEW). These 32 items were presented in a 
randomized sequence. Below each item was the question “Have you seen this item before?” 
and then they selected either OLD or NEW and indicated their confidence level in this 
judgment.  Figure 2-41 presents an exemplar pair of old and new items as they were presented.        

• Purpose: This task serves as the primary method to quantify the effect of emotional valence on 
memory performance. In the case of the passenger, the assessment is about the material that 
they directly viewed and then reinforced by talking aloud about it. For the driver, this serves 
as an assessment of how effectively the information was transmitted from the passenger, which 
is essential to ensuring that the task is about driver-passenger communication and not simply 
passenger memory. Since each participant answered these questions separately, this test 
provides an assessment of memory that is not intermixed with the dynamics of the dyad 
interaction; instead, it provided a means to quantify the success of dyad communication while 
simultaneously capturing any effects of the emotional valence (humor) manipulation on 
communication and memory. As such, it provided a critical parameter across all three of the 
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core hypotheses in this experiment. 

                    

Figure 2-42, Exemplar stimuli for the Recognition Memory Task with the original (OLD) item on the left and 
the lure (NEW) item on the right in which only the age has been changed. 

While the passenger completed the recognition memory task, the driver used the Android phone 
to complete a second set of state scales (SAM, sVAS), the post-drive assessment of the passenger 
trustworthiness with the TWS, and provided their only subjective indications of their perception 
of the drive difficulty and overall traffic density (dVAS, tVAS). The driver also responded to the 
surveys regarding their attitudes and beliefs about sleep and physical activity (PABS, SHBS). After 
the passenger completed the recognition memory task the tablet was passed to the driver who then 
completed all of the above mentioned subjective instruments (dVAS, tVAS, sVAS, TWS, PABS, 
SHBS) as well as their second assessment of trust in the driver (TiDS). 
Next the passenger departed the vehicle and the driver verbally completed the recognition 
memory task, reporting everything that they remember that the passenger told them about the 
news clips. Following the open recall task, the driver completed both the cued recall and 
recognition memory tasks as were previously completed by the passenger. The driver then exited 
the vehicle and the physiological sensors were removed. 

Interim Period 

There was a 2 – 5 week interim period between Drive A and Drive B, during which the 
participants provided the same data as described above for the baseline period (through their 
actigraph watches and online survey). The only difference was the addition of a reminder 
message about one of the facts presented in the podcast about the benefits of increasing physical 
activity or improving healthy sleep. The participants were then provided a brief yes or no answer 
to a question related to the fact.  This question was in a text immediately following the message 
with the link to the online survey with the same questions as were answered during the baseline 
period (MRSI, DDSI, & DRQ). 

Drive B 

The procedure for Drive B was the same as for Drive A, but the passenger and driver reversed 
roles. 

Follow-up Period 
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After Drive B, the participants continued to be monitored during a 2 – 5 week follow-up period, 
which was identical to the interim period, with the only difference being that the persuasive 
messaging facts were taken from the podcasts (on either physical activity or sleep habits) that the 
participants heard during the JAVI task of the second drive. 

Close-out 

At the conclusion of data collection for the entire experiment, all participants who agreed to 
complete the online Study Social Network Information Tool received an email with a link to the 
survey as well as to one final set of physical activity and sleep habit surveys (PABS, SHBS). 

2.4.1.7.7 POC 

Jason Metcalfe (jason.s.metcalfe2.civ@army.mil), ARL, Scientist 
Jean Vettel (jean.m.vettel.civ@army.mil), ARL, Scientist 
Javier Garcia (javier.o.garcia.civ@army.mil), ARL, Scientist 
Rob Fernandez (rfernandez@dcscorp.com), ARL, Vehicle Instrumentation 
Emily Falk (falk@asc.upenn.edu), Univ. of Penn., Scientist 
Matt O’Donnell (matt.odonnell@asc.upenn.edu), Univ. of Penn., Scientist 
Bret Kellihan (bkellihan@dcscorp.com), DCS Corp., Physiological Instrumentation 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Management 
Michael Dunkel (mdunkel@dcscorp.com), DCS Corp., Data Engineer 
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2.4.3 CANCTA Datasets 

The following list of datasets represents partial accounting of data collected under the CANCTA 
program; i.e., those that are in, or being processed for the SANDR. 

2.4.3.1 ARL_EEGCS_VEP Dataset 

A total of 18 datasets were collected across 18 recording sessions, from 18 unique subjects 
recruited from within ARL HRED at Aberdeen Proving Ground.  

The total size of the EEG files is 3.26 GB, representing 2.82 hours of EEG recording. 

Note: The dataset represents only the BioSemi EEG system and VEP task combination. 

2.4.3.2 DCS_CANCTA_FT Dataset 

A total of 13 datasets were collected across 13 recording sessions, from 13 unique subjects 
recruited from within ARL HRED at Aberdeen Proving Ground.  

The total size of the EEG files is 46.3 GB, representing 18.21 hours of EEG recording. 

2.4.3.3 DCS_CANCTA_ODE Dataset 

A total of 67 datasets were collected across 17 recording sessions, from 17 unique subjects 
recruited from within ARL HRED at Aberdeen Proving Ground. Each subject performed 4 
subtasks within the ODE task, resulting in an EEG file. There was 1 dataset that was not usable. 

The total size of the EEG files is 15.3 GB, representing 18.74 hours of EEG recording. 

2.4.3.4 NCTU_CANCTA_RWN_VDE Dataset 

A total of 855 datasets were collected across 855 recording sessions, from 17 unique subjects 
recruited from within the NCTU college student body. Each subject performed 5 task phases 
within the data collection session, resulting in an EEG file. There was 1 dataset that was not 
usable. 

The total size of the EEG files is 129.8 GB, representing 207.62 hours of EEG recording. 

2.4.3.5 TNO_CANCTA_FLERP Dataset 

A total of 42 datasets were collected across 21 recording sessions, from 21 unique subjects 
recruited by TNO (Netherlands). Each subject performed 2 subtasks within the FLERP task, 
resulting in an EEG file.  

The total size of the EEG files is 16.56 GB, representing 23.02 hours of EEG recording. 
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2.4.3.6 TNO_CANCTA_ACC Dataset 

A total of 45 datasets were collected across 15 recording sessions, from 15 unique subjects 
recruited by TNO (Netherlands). Each subject performed 3 subtasks within the ACC task, 
resulting in an EEG file.  

The total size of the EEG files is 33.20 GB, representing 22.50 hours of EEG recording. 

2.4.3.7 RWN-VDEDP Dataset 

A total of 43 duel-subject (driver and passenger) datasets were collected across 43 recording 
sessions, from 44 unique subjects paired into 22 dyads. The subjects were recruited from ARL 
HRED at Aberdeen Proving Ground.  

The total size of the EEG files is 33.85 GB, representing 129.77 hours of EEG recording. 

2.5 Autonomy Research Pilot Initiative (ARPI) 

Vehicle survivability is an important issue in today’s military. One of the most critical influences 
on survivability is the performance of human operators – especially as it degrades with time on 
task, fatigue, divided attention, and other factors. In response to current challenges, significant 
DoD research and development efforts have focused on integrating autonomous vehicle 
technologies as one strategy for mitigating the impact of human error on overall system 
performance. However, simply implementing autonomy without having a clear scheme for 
integrating human and automated task inputs has led to relatively poor system performance and 
thus low user acceptance. 

The degree to which human operators accept and appropriately use autonomous technologies is 
heavily influenced by issues of trust and confidence. That is, as people gain confidence in the 
reliability, robustness, and safety of autonomous technologies, they develop sufficient trust to 
willingly share important decision and/or control authority with such systems. It has been well-
documented that human trust in automation (TiA) is considered a major determinant of 
acceptance and use of these advanced technologies (Dzindolet et al., 2003; Lee & Moray, 1992; 
Lee & See, 2004; Muir, 1989, 1994; Parasuraman & Riley, 1997). More important than 
achieving a certain level of trust, however, is to find an appropriate match between the relative 
capabilities of the technology and the operator’s trust, at least inasmuch as trust affects system 
use, misuse, or disuse (Parasuraman & Riley, 1997; McBride & Morgan, 2010; McGuirl & 
Sarter, 2006; Merritt et al., 2014). Therefore, an important goal for systems designers is to find 
means and mechanisms for calibrating human TiA to elicit the desired interaction behavior 
with the autonomy given the nature of the ongoing, and dynamic, task context (Cai & Lin, 2010; 
Inagaki, 2005; Jamieson & Vicente, 2005; Lee & See, 2004; Parasuraman, 2000). Of course, in 
order to develop a system for active, online calibration – or, effective management – of TiA, one 
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first must have reliable and objective indicators of how and when it changes. Moreover, if such 
indicators are to prove useful, then they must also be robust within and between individuals as 
well as across task, time, and technology. In the ARL_ARPI_TX20 experiment we ask whether, 
through monitoring an operator’s state and behavior, objective metrics can be developed that 
enable effective inference of his or her TiA. If the objective, real-time inference of TiA can be 
demonstrated as valid, reliable, and robust, then systems could be designed to continuously 
monitor TiA in order to maximize the effectiveness (while minimizing the risk) of critical 
human-autonomy shared tasks. In the follow-up ARL_ARPI_TX22 experiment we asked if we 
could (a) predict instances where a subject is likely to either yield control to (“handoff) or arrest 
control from (“takeover”) an automation in real-time and (b) if we can use that information with 
appropriate feedback to influence the likelihood of one behavior over another given previously 
observed response patterns indicating which agent would be the optimal performer given the 
current circumstance. 

In addition to robust and reliable inference of TiA, the notion of its real-time management 
implies a degree of prediction. That is, predictive mitigation strategies are highly preferred to 
reactive compensation for negative consequences already incurred – especially as consequences 
may involve extremely expensive assets such as unmanned ground and air vehicles or even semi-
autonomous vehicles, which carry more serious risks associated with the safety of human 
occupants. Indeed, some have taken the approach of predicting future system performance as a 
means of informing and enhancing operator trust (e.g. Cai & Lin, 2010; Gu et al., 2014). 
However, while somewhat effective when used appropriately, this type of method is rather 
indirect and rests on assumptions that the operator will always use the information provided in 
appropriate and predictable ways. An alternative is to measure the operator directly in real time 
and then use an a priori understanding of indicators of trust-related behaviors (disuse, misuse) to 
predict when system mitigations may be necessary. Yet, owing to heavy use of subjective self-
report and/or performance based evaluations, the accuracy and bandwidth of prospective 
information available about operator state have been typically limited. Therefore, significant 
progress has yet to be made in the development of useful operator-centered estimators and 
predictors that could enable real time trust management. 

Indeed, considerable research on interpersonal trust has revealed measurable patterns of 
physiological change that correlate significantly with changing levels of subjective trust and 
trust-based decision making (c.f. Borum, 2010 for an extensive review). However, to date, trust 
measurement in the context of human-autonomy interaction still exists largely as a subjective 
endeavor (Dzindolet et al., 2003; Lyons et al., 2011; Moray, Inagaki, & Itoh, 2000). 
Encouragingly, methods and measures from psychophysiology have been used to gain insights 
into other aspects of human-autonomy interaction that are likely to be related to variations in 
TiA. For instance, despite the reality that few studies have used eye-tracking expressly for trust 
inference, it has been used to gain insight into constructs such as visual attention, mental 
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workload, and automation complacency (de Greef et al., 2009; Metzger et al., 2000; Rovira & 
Parasuraman, 2010), each of which have logical and/or empirical connections with TiA. 
Similarly, electrophysiological measurements, such as electroencephalogram (EEG), 
electrocardiogram (ECG), or electrodermal activity (EDA) monitoring, have not been applied 
directly to the inference of trust in automation as a cognitive state. However, as with eye 
tracking, psycho- and electro-physiological methods have been applied to examine constructs, 
like task engagement and technology acceptance, that have expected associations with TiA 
(Fairclough & Venables, 2006; Moridis et al., 2012). Moreover, fMRI research has demonstrated 
differential brain activations for building (paracingulate cortex) versus maintaining (ventral 
tegmental area) interpersonal trust (Krueger et al. (2007); importantly, the association of trust 
maintenance with the ventral tegmental area also leads to a potential link to online evaluation of 
expected risk versus reward.  In the ARL_ARPI_TX22 experiment we hypothesize that such 
results will extend to TiA-based decision making as a special case of value-based decision-
making (Rangel et al, 2008) and will thus be reflected in changing EEG as well as associated 
peripheral physiology (ECG, EDA). 

Summarily, the research conducted under the ARPI program is aimed at enhancing human-
autonomy interactions by facilitating the eventual real-time influencing or biasing of behaviors 
that are thought to be based on TiA (i.e. handoff and takeover decisions). The primary focus is to 
assess and further develop psychophysiology-based prediction of changes in trust and/or trust-
related behaviors for the specific purpose of providing feedback that will influence more optimal 
usage of the driving automation. 

2.5.1 ARPI Program Summary 

Under the Autonomy Research Pilot Initiative funded by the Office of the Secretary of Defense, 
research in the Real-World Soldier Quantification branch of ARL-HRED, in collaboration with 
the Army Ground Vehicle Systems Center (GVSC, formerly the Tank and Automotive Research, 
Development and Engineering Center - TARDEC, at the Detroit Arsenal, Warren, MI), the Air 
Force Research Laboratory (AFRL; Wright-Patterson AFB, Dayton, OH), and the US Navy 
Space and Naval Warfare Systems Command (SPAWAR; San Diego, CA), aims to develop a 
broad framework for enhancing the integration of humans and autonomy in the use of advanced 
technologies, including military vehicle-based systems. Measurement and Inference of Trust in 
Driving Autonomy as a function of Reliability and Workload (ARL_ARPI_TX20) 

2.5.1.1 Measurement and Inference of Trust in Driving Autonomy as a function of 
Reliability and Workload (ARL_ARPI_TX20) 

This research was conducted to develop and validate methods for monitoring and predicting 
varying degrees of trust in automation (TiA) using both physiological and behavioral metrics 
characterizing real-time human-automation interactions. The overarching goal of this research 
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was to develop and validate methods for measuring and drawing inferences about TiA, either 
directly or indirectly through correlated constructs. In particular, we examined operator trust in 
vehicle automation as it is reflected in changes observed in subjective reports as well as 
behavioral and physiological state variables during the execution of a shared human-autonomy 
driving task. The stated aims underlying this goal included: 

Aim #1: To develop and experimentally validate metrics (dependent variables) that index 
changes in TiA. Rather than focusing on single-modality metrics, we will record and explore the 
patterns of correlation and co-variance among a variety of psychophysiological and behavioral 
variables and focus particularly on metrics that predict decisions around sharing vehicle control 
with the autonomy in each condition. State measures will be derived from EEG, EOG 
(electrooculography), ECG, EDA, and gaze position tracking as well as the subject vehicle 
control behaviors. 

Aim #2: To develop an understanding of factors (independent variables and covariates) that 
influence the subject’s TiA. Whereas the Aim #1 targets the identification of metrics, or groups 
of metrics, that reliably predict trust-based decision-making, here we seek to gain insight as to 
which factors influence the likelihood and directionality of those same trust-based decisions.  
Such factors will include real-time tracking of variables such as task load, collision risk, and 
recent performance history or trending changes in success rate. 

2.5.1.1.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL 
Protocol Number: ARL-15-023 
Protocol Name: “Measurement and Inference of Trust in Driving Autonomy as a function 
of Reliability and Workload” 
Contract: W911NF-10-D-0002 

2.5.1.1.2 Location 

This study was conducted at GVSC’s Ground Vehicle Simulation Laboratory (GVSL) in Warren, 
MI, using the Ride-Motion Simulator (RMS). 

2.5.1.1.3 Subjects 

A total of 24 subjects participated in this study. Each subject completed all tasks in a single day. 
A total of 119 data recordings were produced, including 16 for the PRACTB task, 23 where only 
manual control of the vehicle was available, and 80 where the different levels of autonomous 
vehicle control were available. 
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2.5.1.1.4 Apparatus 

The following items were used during the experiments. All equipment is located within the 
GVSL at GVSC. 

Ride Motion Simulator (RMS): The RMS is a 6 degree-of freedom (DOF) motion-based 
simulator that is capable of reproducing the dynamics of military ground vehicles over a vast 
array of terrains that are commonly experienced by current force vehicles. As shown in Figure 
2-42, the RMS is composed of a platform that is mounted on a hexapod design of hydraulic 
actuators, the coordinated motion of which produces precise resultant motions through 3 cardinal 
linear (longitudinal, lateral, and vertical) and 3 rotational (yaw, pitch, roll) dimensions. The RMS 
supports a re-configurable cab that allows the experimenter to customize the driver controls, 
incorporate rugged display monitors, seats, and data collection devices (e.g. eye tracking and 
EEG). Supported by the Real-Time Simulation Framework, this environment allows the user to 
be immersed into a synthetic terrain of various types and experience realistic ground vehicle 
dynamics. It has integrated motion, audio, and visual systems for high fidelity real-time 
simulation. 

 

Figure 2-43. Ride Motion Simulator 

Crewstation Cab: The simulation environment was constructed to present participants with 
visual, motion and audio cuing in order to recreate a realistic driving experience. For this 
experiment, the cab was configured as a single-occupant crew station with 3 flat panel displays, 
thus allowing creation of central and peripheral visual flow patterns. The simulator cab 
comprised a vehicle seat with a 4-point harness, a steering buck with wheel and standard gauges 
(speedometer, tachometer, etc.), throttle and brake controls on the floor, and custom controllers 
for additional task inputs. Audio cuing was limited to presenting the participant with the 
experimenter's voice (during instruction and other communication periods), the vehicle's sounds 
(engine noise correlated to engine RPM), and driving-related environmental sounds (e.g. wind 
gusts, passing vehicles).  
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Electrophysiological Data Recording: Electrophysiological data was recorded using a 
commercially-available Biosemi ActiveTwo system. Electroencephalographic (EEG) data was 
collected using an electrode cap with 64 active surface electrodes. The ActiveTwo system uses 
sintered Ag/AgCl electrodes held in place by a snug elastic fabric cap. This system does not 
require conventional skin cleaning and preparation, such as abrasion, but does require gel; 
hypoallergenic, bacteriostatic gel was used to establish conductive contact. The procedure for 
placing the electrodes was standard, minimally discomforting, and has been extensively used in 
both clinical practice and research. The configuration of the electrophysiological recording 
system included 5 bipolar pairs: vertical (VEOG) and horizontal (HEOG) electrooculogram, 
electrocardiogram (ECG), 2 natively referenced channels (left and right mastoid process), and 
one EDA channel.  The VEOG pair was centered superior and inferior to the left eye.  The 
HEOG pair was placed along the outer canthus of each eye. The ECG pair was placed on the 
notch atop the sternum and clavicle of the participant.  The bipolar EDA was placed on the 
palmar surface of the distal phalanges or the thenar and hypothenar eminences of the left or right 
hand (whichever hand is not the one that the participant identifies as her/his primary steering 
hand). 

Head and Eye Tracking:  Minimally calibrated eye gaze and head movement data was acquired 
using a commercially-available eye tracking system (Smart Eye AB) comprising infrared 
emitters and four computer controlled optical zoom cameras that allow 6 degree-of-freedom head 
tracking, 2 degree-of-freedom gaze tracking, and eye blink detection and pupil diameter 
monitoring.  

Video/Audio Recording System: Video data was captured using 2 video cameras mounted on the 
inside of RMS cab, one aimed at the driving display and the other at the subject’s face. All video 
data was used for real-time subject monitoring and is available to facilitate interpretation of 
quantitative data. Audio data was recorded in order to capture dialogue between the participant 
and investigators. 

Standard PCs, Monitors, and Input Devices: This project required connecting an array of 
standard PCs as a local network to enable data synchronization and storage. The RMS control 
and simulation framework used a small cluster of high-speed computational and network assets, 
with software that was optimized for real-time operations with low latency, yet able to preserve 
physics-based fidelity of vehicle and terrain models. Additional PCs were used for audio/video 
recording, eye tracking, surface electrophysiology (EEG/EOG/ECG/EDA), and for the 
presentation of task stimuli. Responses to pedestrian appearances were made using a 
commercially-available game controller (the Nintendo® Wii™ remote). 
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2.5.1.1.5 Demographics 

Demographic information collected for this dataset includes subject ID, age, and dominant hand, 
however, this data was not processed in the current version of the data. It’s available in the raw 
data only. 

2.5.1.1.6 ARL_ARPI_TX20 Tasks 

Participants performed a Physiological Response and Artifact Characterization Test Battery 
(PRACTB) control task and the main task, Leader-Follower Driving (LFD). 

2.5.1.1.6.1  PRACTB Task 

PRACTB is a series of simple laboratory tasks, most of which are standard for experiments that 
employ psychophysiological techniques (i.e. simple baseline, simple reaction time). It was used 
to provide baseline behavioral (eye, head, limb movement) and psycho-physiological (EEG, 
ECG, etc.) data sufficient to allow for experimental control. 

For the ARL_ARPI_TX20 experiment, five PRACTB tasks were chosen, each intended to 
address specific needs for baseline data, sensor cross-validation, and artifact detection and 
extraction. Figure 2-43 shows the display presented to the participant for initiation of the tasks. 

 

Figure 2-44. Control Screen for the Five PRACTB Tasks 

1. Simple baseline – Data acquired from this task enabled characterization of the subject’s baseline 
neurocognitive state before experimentation.  The subject was asked to sit still and focus their 
gaze on a cross superimposed and centered on a uniform background. The baseline video is 2 
minutes long. 

2. Simple reaction time – Data from this task provided individual estimates of the subject’s base 
visual reaction time using the thumb and forefinger of the hand to be used for the pedestrian 
task. The subject was asked to perform a simple reaction time task, composed of the presentation 
of a single red dot followed by a button press. Subjects were instructed to respond as quickly as 
possible. Stimuli were presented for a maximum of 1.5 seconds; each stimulus disappeared as 
soon as the subject responded or the presentation interval expired. To match the presentation 
rate of the pedestrian task (see below), the inter-stimulus interval was chosen from a uniform 



ARL SANDR 
Dataset Summary v2.2.2 

141 

 

random distribution between 4.5 and 6.5 seconds. There were 20 consecutive repetitions for 
each finger (thumb and index finger), with a 5 second pause when switching fingers. 

3. Head Motion – The purpose of this task was to generate a set of head movement artifacts for 
later characterization, detection, and removal from EEG. For this task, the stimuli included a 
psuedo-randomized series of arrows that indicate a direction in which the subject is to rotate 
their head (left, right, up, down). Subjects were asked to move their head ‘comfortably and 
naturally’ and then return to a neutral position. The stimulus appeared for 1 second and inter-
stimulus intervals were 2 seconds. There were 5 repetitions of each direction. 

4. Artifact Production – The purpose of this task was to provide data on artifacts that were not 
already embedded in the previous tasks in a controlled fashion. Subjects were asked to produce 
a series of actions including: eye blink, eyebrow raise, shrug, and jaw clench. The actions were 
cued by a text description centered on the computer screen. There were 20 consecutive 
repetitions for each action. Each stimulus word appeared for 500 milliseconds and inter-
stimulus intervals were 2 seconds. 

5. Study Specific Baselines – The purpose of this last task was to provide baseline physiological 
data for later analyses of the leader-follower driving tasks. In this study-specific baseline, the 
subjects rode a vehicle through a small portion of the experimental environment, which 
contained the lead vehicle, but excluded other ambient traffic, pedestrian stimuli, and other 
screen feedback. The physical simulation apparatus (the RMS) was turned on throughout this 
baseline condition. Subjects were instructed to passively watch the out-the-window view of the 
simulated vehicle without taking any actions. 

2.5.1.1.6.2 LFD Task 

Subjects performed a set of tasks that represented challenges typically associated with driving. 
Some aspects of the driving tasks were, at times, performed jointly with a pseudo-autonomy that 
had varying degrees of performance reliability. Task objectives included lane position 
maintenance, maintaining a prescribed following distance behind a lead vehicle, and monitoring 
for and responding to pedestrians that appeared on the side of the road; each of these objectives 
had specific associated challenges, to be described below. The pedestrian monitoring task 
provided a persistent, high-consequence demand throughout each condition that encouraged the 
subjects to use the automation as much as possible, thus pressuring subjects to continuously 
make active decisions whether to trust the autonomy. 

For each approximate 12-minute condition, subjects were instructed to drive a simulated vehicle 
(denoted “ownship”) one full lap around the two-lane course while maintaining a distance within 
a prescribed range (5 – 20 m) behind the lead vehicle. Figure 2-44 illustrates the complete 
driving course. 
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Figure 2-45. Driving Course for ARL_ARPI_TX20 Experiments 

Participants were given screen feedback indicating whether they were in the required range. The 
screen display presented to the participant is shown in Figure 2-45. The green text string in the 
bottom center of Figure 2-45 indicates the ownship is within the required following range. The 
text string turned red when indicating the vehicle was outside of the required range limits. Speed 
was determined by the lead vehicle and road characteristics (i.e. curves) and, by design, the lead 
vehicle maintained an average speed of 25 mph, with perturbations and curves leading to speeds 
temporarily varying between 15 and 30 mph. Moreover, participants were instructed that they 
must not deviate outside of their lane and that all collisions should be avoided. Under different 
conditions, a pseudo-autonomy (here forward called “the autonomy”) was controlling either the 
vehicle speed (speed control, SC) or both speed and steering (full control, FC). Neither of the 
autonomies were capable of collision avoidance. For conditions in which the autonomy was 
enabled, subjects had the option to enable (using a dedicated on-toggle switch at their left foot) 
or disable the autonomy (by touching a control – throttle or brake – pedal with their right foot) at 
any moment. An indicator light on the screen provided constant status of the autonomy, with 
green meaning “enabled” and red meaning “disabled” (Figure 2-45, top right of main display 
window). When the autonomy was enabled, the subject’s vehicle controls did not affect the 
simulated motion, depending on the condition. Specifically, the steering wheel continued to 
function when the autonomy was enabled in the SC condition because the subject was expected 
to manage heading while the autonomy managed speed; neither the steering wheel nor the pedals 
functioned when the autonomy was enabled in the FC condition. In addition to autonomy 
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condition, there were two automation reliability conditions (defined as described below), 
resulting in a 2 (autonomy type: SC, FC) × 2 (autonomy reliability: low, high) design with a 
manual driving baseline.

 

Figure 2-46. ARL_ARPI_TX20 LFD Screen Presentation 

Figure 2-46 provides a summary of the LFD paradigm. Subjects drive a vehicle (‘ownship’, 
green) while following a lead vehicle (orange). Subjects are instructed to maintain a particular 
following distance as well as consistent lane position. In some conditions, the subject shares 
vehicle control with an auto-driver of varying reliability (low and high) as represented by the 
distributions labeled σL and σF.  Environmental challenges are presented in the form of ambient 
traffic (fT), perturbations to ownship heading (PH) and lead vehicle speed (PS), and static and 
dynamic pedestrians which appear with a specified frequency (fp) and probability structure 
(probability of dynamic pedestrian, ρd). 
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Figure 2-47. Summary of the LFD paradigm for ARL_ARPI_TX20 

The reliability of each autonomy was defined according to the distributions shown in Figure 2-46 
and labeled as σF and σL; these distributions define the amount of variability in maintenance of 
following distance and lane position respectively. For each performance variable in Figure 2-46, 
the desired lane position/ following distance is shown with the dotted line and the current 
position of the ownship is indicated with the solid line; the distributions represent the variance of 
the deviations around the dotted lines (the difference between the dotted and solid lines). For 
each performance variable, the wider distribution represents the low reliability condition and the 
narrow distribution represents the high reliability condition. Moreover, during the driving task, 
subjects experienced vehicle perturbations in both lateral and longitudinal directions. Lateral, or 
heading, perturbations (PH) were presented as gust-like forces acting to push the vehicle out of 
its lane. Longitudinal, or speed, perturbations (PS) involved changes in the speed of the lead 
vehicle through sudden positive (throttle) or negative (brake) accelerations. These perturbations 
occurred, on average, once every 15 ± 5 sec (normally distributed), resulting in approximately 4-
5 perturbations per minute and approximately 45 - 55 per condition; no perturbations overlapped 
in time, meaning that a lateral and longitudinal perturbation did not occur simultaneously. The 
perturbations were semi-randomly selected as to type (lateral/longitudinal) and direction 
(positive or negative along relevant axis). As with lane position and following distance, the 
reliability condition impacted the ability of the autonomy to respond to these perturbations (low 
reliability took longer to return to the desired performance as compared with high-reliability). 
During the task, any collisions with other vehicles or pedestrians did not have a motion 
consequence (the RMS shutter as if driving over a “rumble strip” on the road), a visual collision 
indicator appeared on the screen. 
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Two factors influenced the sequence of perturbations in a deterministic fashion. First, our prior 
experience with simulated driving has shown that participants have difficulty resolving and 
responding to multiple sequential perturbations in a longitudinal direction; this is because it can 
be difficult to distinguish the end of one speed perturbation and the start of another. Therefore, 
there were at least 2 lateral perturbations for each longitudinal perturbation. Second, in order to 
empirically differentiate task difficulty from trust effects, vehicle perturbations in the high-
reliability SC conditions had a different allocation than the other conditions.  That is, in the high 
automation reliability condition, we expected that subjects would allow the vehicle to control 
responses to nearly all of the longitudinal perturbations and, as a result, they would respond to 
fewer total perturbations than in the low reliability condition and presumably have lower 
workload. Therefore, to balance workload/task difficulty across these two (SC) conditions the 
balance of lateral to longitudinal perturbations was a 3:1 ratio rather than 2:1 in all other 
conditions (this value was selected based on pilot testing). In the two full autonomy conditions, 
no effort was made to balance workload, thus allowing investigation of changes or interactions 
associated with automation reliability and workload/task difficulty.  

In order to encourage as much use of the autonomy as possible, subjects also performed a task 
for which there were no possible responses from the autonomy. This task was designed to be 
relevant and similar to typical driving in that it involved reacting to pedestrian entities, some of 
which stepped directly into the pathway of the vehicle. Although this task was unlike real-world 
driving in that the pedestrians “popped” into of the scenario, it did reflect more infrequently 
occurring natural events such as a bicyclist or runner that suddenly emerges from behind a 
parked car. The pedestrian task was chosen to be presented in this fashion in order to facilitate 
analyses that have experimental analogs, such as the classic “oddball” task (see Garrido et al., 
2009 for review and Squires et al., 1975 for original publication), within standard laboratories 
that study cognitive function. Throughout all driving conditions, pedestrians dynamically 
appeared on either the left or right shoulder of the road with a 50% probability; 15% of the 
pedestrians (the rare or “oddball stimulus”) immediately began walking into the path of the 
vehicle when they appeared.  Subjects were asked to respond to all pedestrians using a button 
press on a commercially-available game controller (the Nintendo® Wii™ remote), with static and 
dynamic pedestrians assigned to the thumb and forefinger of the same hand, respectively. This 
was kept the same across all participants because, based on pilot testing, it was decided that the 
differential control between thumb and forefinger was enough to preserve across subjects rather 
than counterbalance and potentially wash out effects. The response device was held in the same, 
subject-selected hand throughout all conditions of the experiment and the other was used for 
control of the steering wheel. Pedestrians appeared at approximately double the rate of vehicle 
perturbations; specifically, a new pedestrian appeared every 6 ± 1 sec. Once they appeared, a 
pedestrian remained in the scenario until the vehicle drove past it (approximately 1.5 sec) or until 
the participant respondeds with a correct button press, in which case the pedestrian simply 
disappeared. It was possible to “collide” with a pedestrian, however, these collisions were not 
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represented with any physical consequences; the vehicle simply drove through the pedestrian 
image and a large, salient error signal was displayed on the screen. Moreover, if the initial button 
press response of the subject is incorrect, they had the opportunity to clear the pedestrian out of 
the way with a successive correct button press.  Therefore, an incorrect response to a pedestrian 
did not necessarily mean that the ownship would collide with that pedestrian. Figure 2-47 shows 
the display following a pedestrian collision (errors for an incorrect button push and an “out of 
range violation” have also occurred per the bottom two red text strings). 

 

Figure 2-48. Display Following a Collision with a Pedestrian for ARL_ARPI_TX20 

Performance was quantified according to the following scoring structure. Participants began each 
LFD task with 500 pts. For the most part, points were not gained, but only lost as a consequence 
of performance errors. Score feedback was provided in real time using minimally-disruptive, 
centrally-presented pop-up values as well as a persistent score counter at the top left corner of the 
central display (Figure 2-45, light blue text string). To highly incentivize attention to the 
pedestrian task, each collision with a pedestrian resulted in a significant loss in points (-100 pts 
per collision); categorization errors through incorrect button press responses only incurred a 
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small penalty (-5 pts). Collisions with other vehicles resulted in a moderate penalty (-50 pts per 
vehicle collision) and driving errors leading to lane departures or violations of the following 
distance threshold, incurred the lowest penalties (-2 pts per 3 seconds spent in driving 
noncompliance). To discourage subjects from completely giving up on the task if all points were 
lost, a small bonus (10 points) was given at the completion of each of 9 zones throughout the 
driving course, which resulted in a 100 point accumulation throughout each scenario. The final 
(total) score for the experiment determined the amount of “bonus” pay received by the 
participants.  The point accumulation resulted in all participants being guaranteed at least a 20% 
bonus on their performance. 

2.5.1.1.7 POC 

Jason Metcalfe (jason.s.metcalfe2.civ@army.mil), ARL, Primary Investigator 
Tony Johnson (tjohnson@dcscorp.com), DCS Corp., Data Engineer 
Michael Dunkel (mdunkel@dcscorp.com), DCS Corp., Data Engineer 

2.5.1.2 Predicting and Influencing Trust-Based Decision Making during Human 
Interaction with Driving Automation (ARL_ARPI_TX22) 

We studied strategies for influencing or biasing trust-based behaviors, and we used both 
physiological and behavioral metrics to characterize real-time human-automation interactions. 
The overarching goal of this research was to use the inferences about TiA that were developed in 
ARL_ARPI_TX20 to enable real-time prediction of behaviors based on TiA (automation handoff 
and takeover events) and to use such predictions to influence contextually appropriate 
automation use. The aims underlying this goal included: 

Aim #1.  Use previous information regarding human and automation performance in this same 
task and environment as ground truth to facilitate real-time prediction of the relative performance 
of the agents as a function of the course and scenario characteristics (i.e. perturbation onsets, 
nearness to ambient traffic, etc.). 

Aim #2.  Compare the “natural”, or un-managed, usage behavior of individuals to their usage 
decisions when provided visual feedback regarding predicted performance in real-time as an 
individual case where handoff and takeover behaviors can be influenced in real-time to the end 
of improving overall performance. 

Aim #3. Compare two different control algorithms for providing the predictive feedback to the 
individual subjects, one that simply reports on relative likelihood of success and one that weights 
the likelihood according to the potential consequence of failure given the current scenario 
configuration.  The expectation is that the probability of success alone, which should vary more 
dynamically, will not be as useful to the participants as will the inclusion of consequence, which 
will modify the degree to which visual feedback indicates a need for change based on current 
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consequence level (e.g. during low consequence instances, the indicator will not as strongly 
indicate a need for a specific agent to be in control as compared with a high-consequence 
circumstance where the change is more essential to success).  In particular, we expect the user to 
show higher use of the consequence-based controller and, as a resultant, better performance and 
ultimately, greater trust in the overall system. 

Aim #4. Test a prototype of a real-time predictor based on physiology, behavior, and context 
variables that has very recently become available to us.  As this is a first examination and to 
avoid contamination of the main experiment, this will only be assessed in a limited subset of the 
participant population pending date of the delivery of the real-time implementation. Thus an 
added experimental condition, which will not increase the overall timeline, will be included for 
this subset of participants. 

Note: A separate pilot study, using the same experimental paradigm and similar 
apparatus, was completed to address this research aim, but those data are not included 
with the ARL_ARPI_TX22 dataset. 

2.5.1.2.1 Protocol 

The research protocol information for this study is as follows: 
 

Organization: ARL 
Protocol Number: ARL-16-045 
Protocol Name: “Predicting and Influencing Trust-Based Decision Making during Human 
Interaction with Driving Automation (‘TX22’)” 
Contract: W911NF-10-D-0002 

2.5.1.2.2 Location 

This study was conducted at GVSC’s Ground Vehicle Simulation Laboratory (GVSL) in Warren, 
MI, using the Ride-Motion Simulator (RMS). 

2.5.1.2.3 Subjects 

A total of 19 subjects participated in this study. Each subject completed all tasks in a single day. 
A total of 68 data recordings were produced from 17 subjects, including 17 recordings where 
only manual control of the vehicle was available and 51 where the different levels of 
autonomous vehicle control were available. No useable data was recorded for two of the 19 
subjects. 
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2.5.1.2.4 Apparatus 

The following items were used during the experiments. All equipment is located within the 
GVSL at GVSC. 

Ride Motion Simulator (RMS): The RMS is a 6 degree-of freedom (DOF) motion-based 
simulator that is capable of reproducing the dynamics of military ground vehicles over a vast 
array of terrains that are commonly experienced by current force vehicles. As shown in Figure 
2-48, the RMS is composed of a platform that is mounted on a hexapod design of hydraulic 
actuators, the coordinated motion of which produces precise resultant motions through 3 cardinal 
linear (longitudinal, lateral, and vertical) and 3 rotational (yaw, pitch, roll) dimensions. The RMS 
supports a re-configurable cab that allows the experimenter to customize the driver controls, 
incorporate rugged display monitors, seats, and data collection devices (e.g. eye tracking and 
EEG). Supported by the Real-Time Simulation Framework, this environment allows the user to 
be immersed into a synthetic terrain of various types and experience realistic ground vehicle 
dynamics. It has integrated motion, audio, and visual systems for high fidelity real-time 
simulation. 

 

Figure 2-49. Ride Motion Simulator 

Crewstation Cab: The simulation environment was constructed to present participants with 
visual, motion and audio cuing in order to recreate a realistic driving experience. For this 
experiment, the cab was configured as a single-occupant crew station with 3 flat panel displays, 
thus allowing creation of central and peripheral visual flow patterns. The simulator cab was 
comprised of a vehicle seat with a 4-point harness, a steering buck with wheel and standard 
gauges (speedometer, tachometer, etc.), throttle and brake controls on the floor, and custom 
controllers for additional task inputs. Audio cuing was limited to presenting the participant with 
the experimenter's voice (during instruction and other communication periods), the vehicle's 
sounds (engine noise correlated to engine RPM), and driving-related environmental sounds (e.g. 
wind gusts, passing vehicles).  
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Electrophysiological Data Recording: Electrophysiological data was recorded using a 
commercially-available Biosemi ActiveTwo system. Electroencephalographic (EEG) data was 
collected using an electrode cap with 64 active surface electrodes. The ActiveTwo system uses 
sintered Ag/AgCl electrodes held in place by a snug elastic fabric cap. This system does not 
require conventional skin cleaning and preparation, such as abrasion, but does require gel; 
hypoallergenic, bacteriostatic gel was used to establish conductive contact. The procedure for 
placing the electrodes was standard, minimally discomforting, and has been extensively used in 
both clinical practice and research. The configuration of the electrophysiological recording 
system included 5 bipolar pairs: vertical (VEOG) and horizontal (HEOG) electrooculogram, 
electrocardiogram (ECG), 2 natively referenced channels (left and right mastoid process), and 
one EDA channel.  The VEOG pair was centered superior and inferior to the left eye.  The 
HEOG pair was placed along the outer canthus of each eye. The ECG pair was placed on the 
notch atop the sternum and clavicle of the participant.  The bipolar EDA was placed on the 
palmar surface of the distal phalanges or the thenar and hypothenar eminences of the left or right 
hand (whichever hand is not the one that the participant identifies as her/his primary steering 
hand). 

Head and Eye Tracking:  Minimally calibrated eye gaze and head movement data was acquired 
using a commercially-available eye tracking system (Smart Eye AB) comprising infrared 
emitters and four computer controlled optical zoom cameras that allow 6 degree-of-freedom head 
tracking, 2 degree-of-freedom gaze tracking, and eye blink detection and pupil diameter 
monitoring.  

Video/Audio Recording System: Video data was captured using 2 video cameras mounted on the 
inside of RMS cab, one aimed at the driving display and the other at the subject’s face. All video 
data was used for real-time subject monitoring and is available to facilitate interpretation of 
quantitative data. Audio data was recorded in order to capture dialogue between the participant 
and investigators. 

Standard PCs, Monitors, and Input Devices: This project required connecting an array of 
standard PCs as a local network to enable data synchronization and storage. The RMS control 
and simulation framework used a small cluster of high-speed computational and network assets, 
with software that was optimized for real-time operations with low latency, yet able to preserve 
physics-based fidelity of vehicle and terrain models. Additional PCs were used for audio/video 
recording, eye tracking, surface electrophysiology (EEG/EOG/ECG/EDA), and for the 
presentation of task stimuli. Responses to pedestrian appearances were made using a 
commercially-available game controller (the Nintendo® Wii™ remote). 
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2.5.1.2.5 Demographics 

Demographic information collected for this dataset includes subject ID, age, and dominant hand, 
however, this data was not processed in the current version of the data. It’s available in the raw 
data only. 

2.5.1.2.6 ARL_ARPI_TX22 Tasks 

Subjects performed a set of tasks that represented challenges typically associated with driving. In 
the majority of the experiment conditions, many aspects of the driving tasks were performed 
jointly with a driving automation. Task objectives included maintaining lane position, 
maintaining a prescribed following distance behind a lead vehicle, and monitoring for and 
responding to pedestrians that appear on the side of the road. Each of these objectives had 
specific associated challenges, to be described below. The pedestrian monitoring task provided a 
persistent, high-consequence demand throughout each condition that encouraged the subjects to 
use the automation as much as possible, thus pressuring subjects to continuously make active 
decisions whether to trust the autonomy. 

For each condition, subjects were instructed to drive a simulated vehicle (denoted “ownship”) 
1.5 laps around the two-lane course while maintaining a distance within a prescribed range (10 – 
30 m) behind the lead vehicle. Figure 2-49 illustrates the complete driving course. 

 

Figure 2-50. Driving Course for ARL_ARPI_TX22 Experiments 
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Participants were given screen feedback indicating current settings, error occurrences, and score. 
The screen display presented to the participant is shown in Figure 2-50. Speed was determined 
by the lead vehicle and road characteristics (i.e. curves). By design, the lead vehicle maintained 
an average speed of 25 mph, with perturbations and curves leading to speeds temporarily varying 
as low as 10 and as high as 30 mph. Moreover, participants were instructed that they must not 
deviate outside of their lane and that all collisions should be avoided. While the driving 
automation (here forward called “the automation”) was capable of controlling vehicle speed and 
steering, it was not capable of avoiding collisions. In conditions where the automation was 
available, subjects always had the option to enable it using a toggle switch (enable) with their left 
foot or disable it using either the throttle or brake (disable). An indicator on the screen provided 
constant status of the automation, a large arrow pointing to one of two mode indicators; with a 
large circled “A” for “auto” and “M” for manual. When the automation was enabled, the subjects 
were instructed to allow the automation to control the throttle, brake, and steering wheel. In 
addition to automation conditions, there was a manual driving baseline with no available 
automation, thus the subjects had to complete the entire task themselves. Note the dot between 
the “A” and “M’ indicators in Figure 2-50. This dot moved between the two indicators and 
indicated the probability of success for an automation selection. If the dot was far to the left, it 
indicated a high probability of success if automation was selected, if far to the right, it indicated 
a higher probability of success if the subject retained manual control. 
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Figure 2-51. ARL_ARPI_TX22 LFD Screen Presentation 
Figure 2-51 provides a summary of the LFD paradigm. Subjects drive a vehicle (‘ownship’, 
green) while following a lead vehicle (orange). Subjects are instructed to maintain a particular 
following distance (horizontal dotted line) as well as consistent lane position (vertical dotted 
line). In some conditions, the subject shares vehicle control with an auto-driver of a performance 
reliability defined as represented by the distributions labeled σL and σF.  Environmental 
challenges are presented in the form of ambient traffic (fT), perturbations to ownship heading 
(PH) and lead vehicle speed (PS), and static and dynamic pedestrians which appear with a 
specified frequency (fp) and probability structure (probability of dynamic pedestrian, ρd). 
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Figure 2-52. Summary of the LFD paradigm for ARL_ARPI_TX22 

The autonomy had good, but imperfect, performance reliability defined by distributions shown 
and labeled as σF and σL in Figure 2-51. These distributions define the amount of variability in 
the automation’s maintenance of following distance and lane position, respectively. In Figure 
2-51 the desired average lane position / following distance is shown with the dotted line and the 
current position of the ownship is indicated with the solid line; the distributions represent the 
variance of the deviations around the dotted lines (the difference between the dotted and solid 
lines). For each performance variable the narrow distribution represents the variance allowed by 
the automation. Moreover, during the driving task, subjects experienced vehicle perturbations in 
both lateral and longitudinal directions. Lateral, or heading, perturbations (PH) were presented as 
gust-like forces acting to push the vehicle out of its lane. Longitudinal, or speed, perturbations 
(PS) involved changes in the speed of the lead vehicle through sudden positive (throttle) or 
negative (brake) accelerations changing speed by 5 miles per hour in either direction (other speed 
changes, such as at tight s-curves, were larger than those due to these pseudo-random 
perturbations). These perturbations occurred, on average, once every 15 ± 5 sec (normally 
distributed), resulting in approximately 4-5 perturbations per minute and approximately 72 - 90 
per 18 minute condition; no perturbations overlapped in time, meaning that a lateral and 
longitudinal perturbation did not occur simultaneously. The perturbations were semi-randomly 
selected as to type (lateral/longitudinal) and direction (positive or negative along relevant axis). 
During the task, any collisions with other vehicles or pedestrians did not have a motion 
consequence (the RMS shutter as if driving over a “rumble strip” on the road), a visual collision 
indicator appeared on the screen. 

Our prior experience with simulated driving has shown that participants have difficulty resolving 
and responding to multiple sequential perturbations in a longitudinal direction; this is because it 
can be difficult to distinguish the end of one speed perturbation and the start of another. 
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Therefore, there were at least two lateral perturbations for each longitudinal perturbation. In 
order to encourage as much use of the automation as possible, subjects also performed a task for 
which there were no responses from the automation. This task was designed to be relevant and 
similar to typical driving in that it involved reacting to pedestrian entities, some of which stepped 
directly into the pathway of the vehicle. Although this task was unlike real-world driving in that 
the pedestrians “popped” into view in the scenario, it did reflect more infrequently occurring 
natural events such as a bicyclist or runner that suddenly emerges from behind a parked car. The 
pedestrian task was chosen to be presented in this fashion in order to facilitate analyses that have 
experimental analogs, such as the classic “oddball” task (see Garrido et al., 2009 for review and 
Squires et al., 1975 for original publication), within standard laboratories that study cognitive 
function. Throughout all driving conditions, pedestrians dynamically appeared on either the left 
or right shoulder of the road with a 50% probability; 15% of the pedestrians (the rare or “oddball 
stimulus”) immediately began walking into the path of the vehicle when they appeared.  Subjects 
were asked to respond to all pedestrians using a button press on a commercially-available game 
controller (the Nintendo® Wii™ remote), with static and dynamic pedestrians assigned to the 
thumb and forefinger of the same hand, respectively. This was kept the same across all 
participants because, based on pilot testing, it was decided that the differential control between 
thumb and forefinger was enough to preserve across subjects rather than counterbalance and 
potentially wash out effects. The response device was held in the same, subject-selected hand 
throughout all conditions of the experiment and the other was used for control of the steering 
wheel. Pedestrians appeared at approximately double the rate of vehicle perturbations; 
specifically, a new pedestrian appeared every 6 ± 1 sec. Once they appeared, a pedestrian 
remained in the scenario until the vehicle drives past it (approximately 1.5 sec) or until the 
participant responds with a correct button press, in which case the pedestrian simply disappeared. 
It was possible to “collide” with a pedestrian. However, these collisions were not represented 
with any physical consequences; the vehicle simply drove through the pedestrian image and an 
error icon was displayed on the screen. Moreover, if the initial button press response of the 
subject was incorrect, they had the opportunity to clear the pedestrian out of the way with a 
successive correct button press.  Therefore, an incorrect response to a pedestrian did not 
necessarily mean that the ownship would collide with that pedestrian. Figure 2-52 shows the 
display following a pedestrian collision. The red error icon third from left indicates a pedestrian 
collision has occurred. The illuminated icon fifth from left indicates that an incorrect button push 
also occurred. 
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Figure 2-53. Display Following a Collision with a Pedestrian for ARL_ARPI_TX22 

Including the two error icons discussed above, a total of eight circular icons were visible on the 
presented display, as shown in detail in Figure 2-53. These icons were mostly transparent until a 
relevant event occurred, at which time they illuminated. 

 

Figure 2-54. ARL_ARPI_TX22 Display Icons 

From left to right, the icons indicated the following: 
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• High range consequence zone. See below. 
• High lane consequence zone. See below. 
• Collision with a pedestrian. 
• Collision with another vehicle (oncoming or lead vehicle). 
• Incorrect pedestrian identification button push. 
• Lane departure/violation. Yellow if out of lane limits, flashes red if a violation (points loss) 

occurs for remaining out of lane in excess of 2 seconds. 
• Range departure/violation. Yellow if out of range limits, flashes red if a violation (points 

loss) occurs for remaining out of range in excess of 2 seconds. 
• Zone completion. Indicates bonus accrued for completing a zone. 

Performance was quantified according to the following scoring structure. Participants began each 
LFD task with 500 pts. For the most part, points were not gained, but only lost as a consequence 
of performance errors. Score feedback was provided in real time using minimally-disruptive, 
centrally-presented icons that illuminated when an error occurred, as well as a persistent score 
bar across the bottom center of the central display. Each collision with a pedestrian, 
categorization error through incorrect button press responses, collision with other vehicles, and 
driving errors leading to lane departures or violations of the following distance threshold, 
incurred penalties dependent on the consequence zone of the course; in the nominal condition, 
these losses were -100, -5, -50, and -2 per 2 seconds in error, respectively. 

Each condition involved pre-selected course segments that vary in consequence, which means 
that point values for lane and range violations changed at specifically chosen places in the 
course. For a high lane consequences zone, point penalties for range were halved (-1 per 2 
seconds) while point values for lane violations were doubled (-4 points per 2 seconds). The 
converse scoring change occurred in high range consequence zones; meaning range violations 
were double while lane violations were halved. It was always the case that a nominal 
consequence zone occurred before successive lane or range consequence zones. The intention of 
these zone changes was to create specific circumstances wherein either agent (human or 
automated) is preferred; for instance, humans are generally superior at handling lateral 
perturbations and automation is superior at maintaining following distance in light of sudden 
speed changes. In all cases, visual feedback was provided to indicate to the subject the current 
consequence level using on-screen icons (Figure 2-53, far left). In the nominal case, both 
consequence indicators remained transparent. There were 4 sequences of consequence-course 
mappings. All subjects had the same consequence sequence for the manual (no automation) 
condition, and the remaining sequences were counterbalanced across the experimental 
conditions. This provided for a degree of unpredictability in consequence changes by the 
subjects. 
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Because of the nature of the lane and range violations as compared with the others, meaning they 
are not entirely discrete and may be corrected for a short period of time prior to the point 
deduction (i.e. it takes 2 seconds of the violation to persist before a deduction occurs), the 
indicator behavior was also nuanced.  That is, the indicators for lane and range provided a 
warning (yellow color) when the condition existed for point deduction and then briefly flashed 
red when a point loss occurred.  Figure 6 demonstrates the behavior of the lane and range 
indicators. The top row of icons provide a warning when the conditions exist for a potential 
deduction, but the time requirement (2 seconds) has not been passed. When a point loss has 
occurred, the icon briefly (~0.7 sec) changed from yellow to red to signal the loss and then 
returned to yellow or, if the condition was corrected, neutral. 

 

Figure 2-55. Lane and Range Indicators 

To discourage subjects from completely giving up on the task in light of a poor performance 
causing loss of all points, a small bonus (5 points regardless of consequence) was given at the 
completion of each of the zones throughout the driving course. As there are 48 total zones in the 
course, this bonus could offset point losses of up to 240 points per condition. The final (total) 
score for the experiment determined an amount of “bonus” pay received by the participants.  All 
participants were guaranteed at least a 50% bonus on their performance, however they were be 
made aware of this in advance. 

2.5.1.2.7 POC 
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2.5.3 ARPI Datasets 

A total of 187 datasets were collected across 41 recording sessions. 
 
The total size of the EEG files is 132.21 GB, representing 46.02 hours of EEG recording. 

2.5.3.1 ARL_ARPI_TX20 Dataset 

A total of 119 datasets were collected across 24 recording sessions, from 24 subjects recruited 
from the Warren, Michigan area. The 119 datasets include 16 of the PRACTB task, 23 where 
only manual control of the vehicle was available, and 80 where some level of autonomous 
control was available. A complete set of vehicle control tasks (one manual control and four with 
some level of autonomous control) was collected for 17 subjects. 

The total size of the EEG files is 85.26 GB, representing 26.32 hours of EEG recording. 
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2.5.3.2 ARL_ARPI_TX22 Dataset 

A total of 68 datasets were collected across 17 recording sessions, from 17 subjects recruited 
from the Warren, Michigan area. A complete set of recordings (one task where only manual 
control of the vehicle was available and three tasks with some level of autonomous control was 
available) was collected for all 17 subjects. 

The total size of the EEG files is 46.95 GB, representing 19.70 hours of EEG recording. 
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